Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 194466 by horsebrand11 last updated on 08/Jul/23

    ⋐

$$\:\:\:\:\Subset \\ $$

Answered by cortano12 last updated on 08/Jul/23

   ⋐

$$\:\:\:\underbrace{\Subset} \\ $$

Answered by witcher3 last updated on 08/Jul/23

e^(Σ_(k=1) ^n ln(1+(1/n)(1+(k/n))))   ln(1+(1/n)(1+(k/n)))=(1/n)(1+(k/n))−(1/(2n^2 ))(1+(k/n))^2 +o((1/n^2 ))  Σ_(k=1) ^n (1/(2n^2 ))(1+(k/n))^2 ≤(1/(2n))Σ_(k=1) ^n (1/n)(1+(k/n))^2 <(1/(2n))∫_0 ^1 (1+x)^2 dx  =(1/n)((8/3)−(1/3))=O((1/n))  Σln(1+(1/n)(1+(k/n)))=Σ_(k=1) ^n (1/n)(1+(k/n))    +O((1/n))  ⇒lim_(n→∞) Σ_(k=1) ^n ln(1+(1/n)(1+(k/n)))=Σ_(k=1) ^n (1/n)(1+(k/n))  =∫_0 ^1 (1+x)dx=(3/2)  lim_(n→∞) Π_(k=1) ^n (1+(1/n)+(k/n^2 ))=e^(3/2)

$$\mathrm{e}^{\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)\right)} \\ $$$$\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)\right)=\frac{\mathrm{1}}{\mathrm{n}}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)−\frac{\mathrm{1}}{\mathrm{2n}^{\mathrm{2}} }\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)^{\mathrm{2}} +\mathrm{o}\left(\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\right) \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2n}^{\mathrm{2}} }\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)^{\mathrm{2}} \leqslant\frac{\mathrm{1}}{\mathrm{2n}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)^{\mathrm{2}} <\frac{\mathrm{1}}{\mathrm{2n}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{2}} \mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{n}}\left(\frac{\mathrm{8}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\right)=\mathrm{O}\left(\frac{\mathrm{1}}{\mathrm{n}}\right) \\ $$$$\Sigma\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)\right)=\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)\:\:\:\:+\mathrm{O}\left(\frac{\mathrm{1}}{\mathrm{n}}\right) \\ $$$$\Rightarrow\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)\right)=\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right) \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\mathrm{x}\right)\mathrm{dx}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}}+\frac{\mathrm{k}}{\mathrm{n}^{\mathrm{2}} }\right)=\mathrm{e}^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com