Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 196321 by sniper237 last updated on 22/Aug/23

   lim_(n→+∞)  sin(2π(√(n^2 +1 )) ) = 0      lim_(n→+∞)   arg(n^2 +n+1+i) = 0

$$\:\:\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:{sin}\left(\mathrm{2}\pi\sqrt{{n}^{\mathrm{2}} +\mathrm{1}\:}\:\right)\:=\:\mathrm{0} \\ $$$$\:\:\:\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\:{arg}\left({n}^{\mathrm{2}} +{n}+\mathrm{1}+{i}\right)\:=\:\mathrm{0} \\ $$

Answered by witcher3 last updated on 22/Aug/23

lim_(n→∞) sin(2π(√(n^2 +1)))..  sin(2π(√(1+n^2 )))=sin(2πn((√(1+(1/n^2 )))))  (√(1+(1/n^2 )))=1+(1/(2n^2 ))+o((1/n^2 ))  sin(2π(√(1+n^2 )))=sin(2π+(π/n)+o((1/n)))  =sin((π/n)+o((1/n))→0  elementry why  sin(2πn+x)=sin(x),∀(n,x)∈Z∗C  ⇔lim_(n→∞) sin(2π(√(1+n^2 )))=lim_(n→∞) sin(2π(√(1+n^2 ))−2πn)  =lim_(n→∞) sin(((2π)/( (√(1+n^2 ))+n)))=sin(lim_(n→∞) .((2π)/(n+(√(1+n^2 )))))  by continuity of sin  =sin(0)=0  arg(n^2 +n+1+i)≡tan^(−1) ((1/(1+n+n^2 )))[2π]  lim_(n→∞) tan^(−1) ((1/(1+n+n^2 )))=tan^(−1) (lim_(n→∞) (1/(n^2 +n+1)))]  ≡0[2π]

$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}sin}\left(\mathrm{2}\pi\sqrt{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}\right).. \\ $$$$\mathrm{sin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }\right)=\mathrm{sin}\left(\mathrm{2}\pi\mathrm{n}\left(\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }}\right)\right) \\ $$$$\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2n}^{\mathrm{2}} }+\mathrm{o}\left(\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\right) \\ $$$$\mathrm{sin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }\right)=\mathrm{sin}\left(\mathrm{2}\pi+\frac{\pi}{\mathrm{n}}+\mathrm{o}\left(\frac{\mathrm{1}}{\mathrm{n}}\right)\right) \\ $$$$=\mathrm{sin}\left(\frac{\pi}{\mathrm{n}}+\mathrm{o}\left(\frac{\mathrm{1}}{\mathrm{n}}\right)\rightarrow\mathrm{0}\right. \\ $$$$\mathrm{elementry}\:\mathrm{why} \\ $$$$\mathrm{sin}\left(\mathrm{2}\pi\mathrm{n}+\mathrm{x}\right)=\mathrm{sin}\left(\mathrm{x}\right),\forall\left(\mathrm{n},\mathrm{x}\right)\in\mathbb{Z}\ast\mathbb{C} \\ $$$$\Leftrightarrow\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}sin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }\right)=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}sin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }−\mathrm{2}\pi\mathrm{n}\right) \\ $$$$=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}sin}\left(\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }+\mathrm{n}}\right)=\mathrm{sin}\left(\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}.\frac{\mathrm{2}\pi}{\mathrm{n}+\sqrt{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }}\right) \\ $$$$\mathrm{by}\:\mathrm{continuity}\:\mathrm{of}\:\mathrm{sin} \\ $$$$=\mathrm{sin}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\mathrm{arg}\left(\mathrm{n}^{\mathrm{2}} +\mathrm{n}+\mathrm{1}+\mathrm{i}\right)\equiv\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}+\mathrm{n}+\mathrm{n}^{\mathrm{2}} }\right)\left[\mathrm{2}\pi\right] \\ $$$$\left.\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}+\mathrm{n}+\mathrm{n}^{\mathrm{2}} }\right)=\mathrm{tan}^{−\mathrm{1}} \left(\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{n}+\mathrm{1}}\right)\right] \\ $$$$\equiv\mathrm{0}\left[\mathrm{2}\pi\right] \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com