Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 199149 by ajfour last updated on 28/Oct/23

Commented by ajfour last updated on 28/Oct/23

No;  rather a=1<b.  Find R=f(b).

$${No};\:\:{rather}\:{a}=\mathrm{1}<{b}.\:\:{Find}\:{R}={f}\left({b}\right). \\ $$

Answered by ajfour last updated on 28/Oct/23

Answered by mr W last updated on 29/Oct/23

Commented by mr W last updated on 29/Oct/23

(R/(cos θ))−(a/(tan ((π/4)−(θ/2))))=(√((R+a)^2 −a^2 ))  let α=(a/R), β=(b/R)  (1/(cos θ))−(α/(tan ((π/4)−(θ/2))))=(√(1+2α))  (2α+1)+2 tan ((π/4)−(θ/2))(√(2α+1))−(1+((2 tan ((π/4)−(θ/2)))/(cos θ)))=0  (√(2α+1))=(√(1+tan^2  ((π/4)−(θ/2))+((2 tan ((π/4)−(θ/2)))/(cos θ))))−tan ((π/4)−(θ/2))  ⇒α(θ)=(1/2)[(√(1+tan^2  ((π/4)−(θ/2))+((2 tan ((π/4)−(θ/2)))/(cos θ))))−tan ((π/4)−(θ/2))]^2 −(1/2)  similarly  ⇒β(θ)=(1/2)[(√(1+tan^2  (θ/2)+((2 tan (θ/2))/(sin θ))))−tan (θ/2)]^2 −(1/2)  from ((β(θ))/(a(θ)))=(b/a) we solve for θ and  then get R=(b/(β(θ))).    example:  a=1, b=3  ⇒θ≈0.5658 ⇒R≈15.1054

$$\frac{{R}}{\mathrm{cos}\:\theta}−\frac{{a}}{\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)}=\sqrt{\left({R}+{a}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$${let}\:\alpha=\frac{{a}}{{R}},\:\beta=\frac{{b}}{{R}} \\ $$$$\frac{\mathrm{1}}{\mathrm{cos}\:\theta}−\frac{\alpha}{\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)}=\sqrt{\mathrm{1}+\mathrm{2}\alpha} \\ $$$$\left(\mathrm{2}\alpha+\mathrm{1}\right)+\mathrm{2}\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)\sqrt{\mathrm{2}\alpha+\mathrm{1}}−\left(\mathrm{1}+\frac{\mathrm{2}\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)}{\mathrm{cos}\:\theta}\right)=\mathrm{0} \\ $$$$\sqrt{\mathrm{2}\alpha+\mathrm{1}}=\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\left(\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)+\frac{\mathrm{2}\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)}{\mathrm{cos}\:\theta}}−\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right) \\ $$$$\Rightarrow\alpha\left(\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}\left[\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\left(\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)+\frac{\mathrm{2}\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)}{\mathrm{cos}\:\theta}}−\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)\right]^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${similarly} \\ $$$$\Rightarrow\beta\left(\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}\left[\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}+\frac{\mathrm{2}\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}{\mathrm{sin}\:\theta}}−\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\right]^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${from}\:\frac{\beta\left(\theta\right)}{{a}\left(\theta\right)}=\frac{{b}}{{a}}\:{we}\:{solve}\:{for}\:\theta\:{and} \\ $$$${then}\:{get}\:{R}=\frac{{b}}{\beta\left(\theta\right)}. \\ $$$$ \\ $$$${example}: \\ $$$${a}=\mathrm{1},\:{b}=\mathrm{3} \\ $$$$\Rightarrow\theta\approx\mathrm{0}.\mathrm{5658}\:\Rightarrow{R}\approx\mathrm{15}.\mathrm{1054} \\ $$

Commented by mr W last updated on 29/Oct/23

Commented by ajfour last updated on 29/Oct/23

Thank you sir. I am trying still for  an exact one.

$${Thank}\:{you}\:{sir}.\:{I}\:{am}\:{trying}\:{still}\:{for} \\ $$$${an}\:{exact}\:{one}. \\ $$

Answered by mr W last updated on 29/Oct/23

Commented by mr W last updated on 29/Oct/23

equ. of tangent line:  x cos θ+y sin θ−R=0  center of circle A((√(R(R+2a))), a)  center of circle B(b, (√(R(R+2b)))  (√(R(R+2a))) cos θ+a sin θ−R=−a  b cos θ+(√(R(R+2a))) sin θ−R=−b  ⇒sin θ=(((R−b)(√(R(R+2a)))−(R−a)b)/( R(√((R+2a)(R+2b)))−ab))  ⇒cos θ=(((R−a)(√(R(R+2b)))−(R−b)a)/( R(√((R+2a)(R+2b)))−ab))  [(R−b)(√(R(R+2a)))−(R−a)b]^2 +[(R−a)(√(R(R+2b)))−(R−b)a]^2 =[ R(√((R+2a)(R+2b)))−ab]^2     example:  (b/a)=3 ⇒(R/a)≈15.104081062050845

$${equ}.\:{of}\:{tangent}\:{line}: \\ $$$${x}\:\mathrm{cos}\:\theta+{y}\:\mathrm{sin}\:\theta−{R}=\mathrm{0} \\ $$$${center}\:{of}\:{circle}\:{A}\left(\sqrt{{R}\left({R}+\mathrm{2}{a}\right)},\:{a}\right) \\ $$$${center}\:{of}\:{circle}\:{B}\left({b},\:\sqrt{{R}\left({R}+\mathrm{2}{b}\right.}\right) \\ $$$$\sqrt{{R}\left({R}+\mathrm{2}{a}\right)}\:\mathrm{cos}\:\theta+{a}\:\mathrm{sin}\:\theta−{R}=−{a} \\ $$$${b}\:\mathrm{cos}\:\theta+\sqrt{{R}\left({R}+\mathrm{2}{a}\right)}\:\mathrm{sin}\:\theta−{R}=−{b} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{\left({R}−{b}\right)\sqrt{{R}\left({R}+\mathrm{2}{a}\right)}−\left({R}−{a}\right){b}}{\:{R}\sqrt{\left({R}+\mathrm{2}{a}\right)\left({R}+\mathrm{2}{b}\right)}−{ab}} \\ $$$$\Rightarrow\mathrm{cos}\:\theta=\frac{\left({R}−{a}\right)\sqrt{{R}\left({R}+\mathrm{2}{b}\right)}−\left({R}−{b}\right){a}}{\:{R}\sqrt{\left({R}+\mathrm{2}{a}\right)\left({R}+\mathrm{2}{b}\right)}−{ab}} \\ $$$$\left[\left({R}−{b}\right)\sqrt{{R}\left({R}+\mathrm{2}{a}\right)}−\left({R}−{a}\right){b}\right]^{\mathrm{2}} +\left[\left({R}−{a}\right)\sqrt{{R}\left({R}+\mathrm{2}{b}\right)}−\left({R}−{b}\right){a}\right]^{\mathrm{2}} =\left[\:{R}\sqrt{\left({R}+\mathrm{2}{a}\right)\left({R}+\mathrm{2}{b}\right)}−{ab}\right]^{\mathrm{2}} \\ $$$$ \\ $$$${example}: \\ $$$$\frac{{b}}{{a}}=\mathrm{3}\:\Rightarrow\frac{{R}}{{a}}\approx\mathrm{15}.\mathrm{104081062050845} \\ $$

Commented by ajfour last updated on 29/Oct/23

This is what i had hoped! thanks Sir.

$${This}\:{is}\:{what}\:{i}\:{had}\:{hoped}!\:{thanks}\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com