Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 202535 by Rasheed.Sindhi last updated on 29/Dec/23

Solve for x  ((x^3 +3x−3))^(1/3)  +((−x^3 −3x+5))^(1/3)  =2  (An alteration of Q#202500)

$$\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{{x}} \\ $$$$\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +\mathrm{3}{x}−\mathrm{3}}\:+\sqrt[{\mathrm{3}}]{−{x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{5}}\:=\mathrm{2} \\ $$$$\left(\mathrm{An}\:\mathrm{alteration}\:\mathrm{of}\:\mathrm{Q}#\mathrm{202500}\right) \\ $$

Answered by mr W last updated on 29/Dec/23

((x^3 +3x−3))^(1/n) +((−x^3 −3x+5))^(1/n) =2  n∈N^(≥2) , x∈R  let x^3 +3x−4=u  ((1+u))^(1/n) +((1−u))^(1/n) =2  u=0 is a trivial root  ((1+u))^(1/n)  is strictly increasing.  ((1−u))^(1/n)  is strictly decreasing.  ⇒u=0 is one and the only one root  ⇒x^3 +3x−4=u=0  ⇒(x−1)(x^2 +x+4)=0  x^2 +x+4=(x+(1/2))^2 +((15)/4)≠0  ⇒x−1=0 ⇒x=1 ✓    or   ((1+u))^(1/n) +((1−u))^(1/n) ≤2  equality holds when ((1+u))^(1/n) =((1−u))^(1/n) ,  i.e. 1+u=1−u, ⇒u=0

$$\sqrt[{{n}}]{{x}^{\mathrm{3}} +\mathrm{3}{x}−\mathrm{3}}+\sqrt[{{n}}]{−{x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{5}}=\mathrm{2} \\ $$$${n}\in{N}^{\geqslant\mathrm{2}} ,\:\boldsymbol{{x}}\in\boldsymbol{{R}} \\ $$$${let}\:{x}^{\mathrm{3}} +\mathrm{3}{x}−\mathrm{4}={u} \\ $$$$\sqrt[{{n}}]{\mathrm{1}+{u}}+\sqrt[{{n}}]{\mathrm{1}−{u}}=\mathrm{2} \\ $$$${u}=\mathrm{0}\:{is}\:{a}\:{trivial}\:{root} \\ $$$$\sqrt[{{n}}]{\mathrm{1}+{u}}\:{is}\:{strictly}\:{increasing}. \\ $$$$\sqrt[{{n}}]{\mathrm{1}−{u}}\:{is}\:{strictly}\:{decreasing}. \\ $$$$\Rightarrow{u}=\mathrm{0}\:{is}\:{one}\:{and}\:{the}\:{only}\:{one}\:{root} \\ $$$$\Rightarrow{x}^{\mathrm{3}} +\mathrm{3}{x}−\mathrm{4}={u}=\mathrm{0} \\ $$$$\Rightarrow\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{4}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{x}+\mathrm{4}=\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{15}}{\mathrm{4}}\neq\mathrm{0} \\ $$$$\Rightarrow{x}−\mathrm{1}=\mathrm{0}\:\Rightarrow{x}=\mathrm{1}\:\checkmark \\ $$$$ \\ $$$${or}\: \\ $$$$\sqrt[{{n}}]{\mathrm{1}+{u}}+\sqrt[{{n}}]{\mathrm{1}−{u}}\leqslant\mathrm{2} \\ $$$${equality}\:{holds}\:{when}\:\sqrt[{{n}}]{\mathrm{1}+{u}}=\sqrt[{{n}}]{\mathrm{1}−{u}}, \\ $$$${i}.{e}.\:\mathrm{1}+{u}=\mathrm{1}−{u},\:\Rightarrow{u}=\mathrm{0} \\ $$

Commented by mr W last updated on 29/Dec/23

in case n=3:  ((1+u))^(1/3) +((1−u))^(1/3) =a with 0<a≤2  1+u+1−u+3(((1+u)(1−u)))^(1/3) (((1+u))^(1/3) +((1−u))^(1/3) )=2^3   2+3a(((1+u)(1−u)))^(1/3) =a^3   ((1−u^2 ))^(1/3) =((a^3 −2)/(3a))  ⇒1−u^2 =(((a^3 −2)^3 )/(27a^3 ))  ⇒u=±(√(1−(((a^3 −2)^3 )/(27a^3 ))))  ...

$${in}\:{case}\:{n}=\mathrm{3}: \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{1}+{u}}+\sqrt[{\mathrm{3}}]{\mathrm{1}−{u}}={a}\:{with}\:\mathrm{0}<{a}\leqslant\mathrm{2} \\ $$$$\mathrm{1}+{u}+\mathrm{1}−{u}+\mathrm{3}\sqrt[{\mathrm{3}}]{\left(\mathrm{1}+{u}\right)\left(\mathrm{1}−{u}\right)}\left(\sqrt[{\mathrm{3}}]{\mathrm{1}+{u}}+\sqrt[{\mathrm{3}}]{\mathrm{1}−{u}}\right)=\mathrm{2}^{\mathrm{3}} \\ $$$$\mathrm{2}+\mathrm{3}{a}\sqrt[{\mathrm{3}}]{\left(\mathrm{1}+{u}\right)\left(\mathrm{1}−{u}\right)}={a}^{\mathrm{3}} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{1}−{u}^{\mathrm{2}} }=\frac{{a}^{\mathrm{3}} −\mathrm{2}}{\mathrm{3}{a}} \\ $$$$\Rightarrow\mathrm{1}−{u}^{\mathrm{2}} =\frac{\left({a}^{\mathrm{3}} −\mathrm{2}\right)^{\mathrm{3}} }{\mathrm{27}{a}^{\mathrm{3}} } \\ $$$$\Rightarrow{u}=\pm\sqrt{\mathrm{1}−\frac{\left({a}^{\mathrm{3}} −\mathrm{2}\right)^{\mathrm{3}} }{\mathrm{27}{a}^{\mathrm{3}} }} \\ $$$$... \\ $$

Commented by Rasheed.Sindhi last updated on 29/Dec/23

Thanks sir mr W!

$$\mathbb{T}\boldsymbol{\mathrm{han}}\Bbbk\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{sir}}\:\boldsymbol{\mathrm{mr}}\:\boldsymbol{\mathrm{W}}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com