Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 205599 by mnjuly1970 last updated on 25/Mar/24

   laplace transform...             L {  sin((√t) )} =?  −−−−

$$ \\ $$$$\:{laplace}\:{transform}... \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\mathscr{L}\:\left\{\:\:{sin}\left(\sqrt{{t}}\:\right)\right\}\:=? \\ $$$$−−−− \\ $$

Commented by SANOGO last updated on 25/Mar/24

merci beaucoup

$${merci}\:{beaucoup} \\ $$

Answered by Berbere last updated on 25/Mar/24

L{sin((√t))}(x)=∫_0 ^∞ sin((√t))e^(−xt) dt;x>0  (√t)=y  =∫_0 ^∞ sin(y)e^(−xy^2 ) 2ydy=^(IBP) [−(e^(−xy^2 ) /x)sin(y)]_0 ^∞ +(1/x)∫_0 ^∞ cos(y)e^(−xy^2 ) dy  =(1/x)Re∫_0 ^∞ e^(−xy^2 +iy) dy=(1/x)Re∫_0 ^∞ e^(−(y(√x)+(i/(2(√x))))^2 −(1/(4x))) dy  y(√x).=u,(e^(−(1/(4x))) /(x(√x)))Re∫_0 ^∞ e^(−(u+(i/(2(√x))))^2 ) du  X=u+(i/(2(√x)));(e^(−(1/(4x))) /(x(√x)))Re∫_(0+(i/(2(√x)))) ^(∞+(i/(2(√x)))) e^(−X^2 ) dX;  let rectangle ofDq (0,0) (0,(i/(2(√x))));(∞,(i/(2(√x))));(∞,0)  f(z)=e^(−z^2 )   ∫_D f(z)dz=0  Holomorphic function cauchy Theorem  ∫_0 ^(i/(2(√x))) f(z)dz+∫_(i/(2(√x))) ^(∞+(i/(2(√x)))) f(z)dz+∫_(∞+(i/(2(√x)))) ^∞ f(z)dz_(=0) +∫_∞ ^0 f(z)dz=0  z=x+iy  ∣f(z)∣≤e^(−y^2 ) .e^(−x^2 ) →0 x→∞  ∫_0 ^∞ e^(−z^2 ) =(1/2)Γ((1/2))=((√π)/2);∫_0 ^(i/(2(√x))) e^(−z^2 ) dz;z=it  =i∫_0 ^(1/(2(√x))) e^t^2  dt imaginair Pur  Re∫_(0+(i/(2(√x)))) ^(∞+(i/(2(√x)))) e^(−X^2 ) =((√π)/2)  L(sin((√t))(x)=(e^(−(1/(4x))) /(x(√x))).((√π)/2)

$$\mathscr{L}\left\{{sin}\left(\sqrt{{t}}\right)\right\}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} {sin}\left(\sqrt{{t}}\right){e}^{−{xt}} {dt};{x}>\mathrm{0} \\ $$$$\sqrt{{t}}={y} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {sin}\left({y}\right){e}^{−{xy}^{\mathrm{2}} } \mathrm{2}{ydy}\overset{{IBP}} {=}\left[−\frac{{e}^{−{xy}^{\mathrm{2}} } }{{x}}{sin}\left({y}\right)\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{1}}{{x}}\int_{\mathrm{0}} ^{\infty} {cos}\left({y}\right){e}^{−{xy}^{\mathrm{2}} } {dy} \\ $$$$=\frac{\mathrm{1}}{{x}}{Re}\int_{\mathrm{0}} ^{\infty} {e}^{−{xy}^{\mathrm{2}} +{iy}} {dy}=\frac{\mathrm{1}}{{x}}{Re}\int_{\mathrm{0}} ^{\infty} {e}^{−\left({y}\sqrt{{x}}+\frac{{i}}{\mathrm{2}\sqrt{{x}}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}{x}}} {dy} \\ $$$${y}\sqrt{{x}}.={u},\frac{{e}^{−\frac{\mathrm{1}}{\mathrm{4}{x}}} }{{x}\sqrt{{x}}}{Re}\int_{\mathrm{0}} ^{\infty} {e}^{−\left({u}+\frac{{i}}{\mathrm{2}\sqrt{{x}}}\right)^{\mathrm{2}} } {du} \\ $$$${X}={u}+\frac{{i}}{\mathrm{2}\sqrt{{x}}};\frac{{e}^{−\frac{\mathrm{1}}{\mathrm{4}{x}}} }{{x}\sqrt{{x}}}{Re}\int_{\mathrm{0}+\frac{{i}}{\mathrm{2}\sqrt{{x}}}} ^{\infty+\frac{{i}}{\mathrm{2}\sqrt{{x}}}} {e}^{−{X}^{\mathrm{2}} } {dX}; \\ $$$${let}\:{rectangle}\:{ofDq}\:\left(\mathrm{0},\mathrm{0}\right)\:\left(\mathrm{0},\frac{{i}}{\mathrm{2}\sqrt{{x}}}\right);\left(\infty,\frac{{i}}{\mathrm{2}\sqrt{{x}}}\right);\left(\infty,\mathrm{0}\right) \\ $$$${f}\left({z}\right)={e}^{−{z}^{\mathrm{2}} } \\ $$$$\int_{{D}} {f}\left({z}\right){dz}=\mathrm{0}\:\:{Holomorphic}\:{function}\:{cauchy}\:{Theorem} \\ $$$$\int_{\mathrm{0}} ^{\frac{{i}}{\mathrm{2}\sqrt{{x}}}} {f}\left({z}\right){dz}+\int_{\frac{{i}}{\mathrm{2}\sqrt{{x}}}} ^{\infty+\frac{{i}}{\mathrm{2}\sqrt{{x}}}} {f}\left({z}\right){dz}+\int_{\infty+\frac{{i}}{\mathrm{2}\sqrt{{x}}}} ^{\infty} {f}\left({z}\right){dz}_{=\mathrm{0}} +\int_{\infty} ^{\mathrm{0}} {f}\left({z}\right){dz}=\mathrm{0} \\ $$$${z}={x}+{iy}\:\:\mid{f}\left({z}\right)\mid\leqslant{e}^{−{y}^{\mathrm{2}} } .{e}^{−{x}^{\mathrm{2}} } \rightarrow\mathrm{0}\:{x}\rightarrow\infty \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−{z}^{\mathrm{2}} } =\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\sqrt{\pi}}{\mathrm{2}};\int_{\mathrm{0}} ^{\frac{{i}}{\mathrm{2}\sqrt{{x}}}} {e}^{−{z}^{\mathrm{2}} } {dz};{z}={it} \\ $$$$={i}\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}} {e}^{{t}^{\mathrm{2}} } {dt}\:{imaginair}\:{Pur} \\ $$$${Re}\int_{\mathrm{0}+\frac{{i}}{\mathrm{2}\sqrt{{x}}}} ^{\infty+\frac{{i}}{\mathrm{2}\sqrt{{x}}}} {e}^{−{X}^{\mathrm{2}} } =\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathcal{L}}\left({sin}\left(\sqrt{{t}}\right)\left({x}\right)=\frac{{e}^{−\frac{\mathrm{1}}{\mathrm{4}{x}}} }{{x}\sqrt{{x}}}.\frac{\sqrt{\pi}}{\mathrm{2}}\right. \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 25/Mar/24

thanks alot  Master

$${thanks}\:{alot}\:\:{Master}\: \\ $$

Commented by Berbere last updated on 27/Mar/24

withe pleasur

$${withe}\:{pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com