Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 205750 by MetaLahor1999 last updated on 29/Mar/24

∫_0 ^(+∞) (1/(1+e^(2x) ))dx=?

$$\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{1}}{\mathrm{1}+{e}^{\mathrm{2}{x}} }{dx}=? \\ $$

Commented by mokys last updated on 29/Mar/24

= −(1/2)∫_0 ^( ∞)  ((−2e^(−2x) )/(1+e^(−2x) )) dx = (1/2) ∫_0 ^( 1)  (du/(1+u))    = (1/2) (ln2)     Aldolaimy Mohammad

$$=\:−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \:\frac{−\mathrm{2}{e}^{−\mathrm{2}{x}} }{\mathrm{1}+{e}^{−\mathrm{2}{x}} }\:{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{du}}{\mathrm{1}+{u}} \\ $$$$ \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left({ln}\mathrm{2}\right) \\ $$$$ \\ $$$$\:{Aldolaimy}\:{Mohammad} \\ $$

Commented by MetaLahor1999 last updated on 29/Mar/24

thank u

$${thank}\:{u} \\ $$

Commented by mokys last updated on 29/Mar/24

welcome

$${welcome} \\ $$

Answered by lepuissantcedricjunior last updated on 29/Mar/24

∫_0 ^∞ (dx/(1+e^(2x) ))=∫_0 ^∞ (e^(−2x) /(1+e^(−2x) ))dx=−(1/2)∫_0 ^∞ ((−2e^(−2x) )/(1+e^(−2x) ))dx                      =−(1/2)[ln(1+e^(−2x) )]_0 ^∞                       =ln(√2)  ∫_0 ^∞ (dx/(1+e^(2x) ))=ln((√2))  =====================  .......le puissant Dr.......................

$$\int_{\mathrm{0}} ^{\infty} \frac{{d}\boldsymbol{{x}}}{\mathrm{1}+\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{x}}} }=\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{{e}}^{−\mathrm{2}\boldsymbol{{x}}} }{\mathrm{1}+\boldsymbol{{e}}^{−\mathrm{2}\boldsymbol{{x}}} }\boldsymbol{{dx}}=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{−\mathrm{2}\boldsymbol{{e}}^{−\mathrm{2}\boldsymbol{{x}}} }{\mathrm{1}+\boldsymbol{{e}}^{−\mathrm{2}\boldsymbol{{x}}} }\boldsymbol{{dx}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−\frac{\mathrm{1}}{\mathrm{2}}\left[\boldsymbol{{ln}}\left(\mathrm{1}+\boldsymbol{{e}}^{−\mathrm{2}\boldsymbol{{x}}} \right)\right]_{\mathrm{0}} ^{\infty} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\boldsymbol{{ln}}\sqrt{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{{dx}}}{\mathrm{1}+\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{x}}} }=\boldsymbol{{ln}}\left(\sqrt{\mathrm{2}}\right) \\ $$$$===================== \\ $$$$.......{le}\:{puissant}\:\boldsymbol{{D}}{r}....................... \\ $$

Answered by mathzup last updated on 31/Mar/24

I=∫_0 ^∞  (dx/(1+e^(2x) ))=_(e^x =t)   ∫_1 ^∞ (dt/(t(1+t^2 )))  =∫_1 ^∞ ((1/t)−(t/(1+t^2 )))dt  =[lnt−(1/2)ln(1+t^2 )]_1 ^∞ =[ln((t/( (√(1+t^2 )))))]_1 ^∞   =0−ln((1/( (√2))))=(1/2)ln(2)

$${I}=\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\mathrm{1}+{e}^{\mathrm{2}{x}} }=_{{e}^{{x}} ={t}} \:\:\int_{\mathrm{1}} ^{\infty} \frac{{dt}}{{t}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} \\ $$$$=\int_{\mathrm{1}} ^{\infty} \left(\frac{\mathrm{1}}{{t}}−\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right){dt} \\ $$$$=\left[{lnt}−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right]_{\mathrm{1}} ^{\infty} =\left[{ln}\left(\frac{{t}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\right)\right]_{\mathrm{1}} ^{\infty} \\ $$$$=\mathrm{0}−{ln}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com