Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 206212 by cortano21 last updated on 09/Apr/24

Commented by Frix last updated on 09/Apr/24

f′(0)=c which is independent of a

$${f}'\left(\mathrm{0}\right)={c}\:\mathrm{which}\:\mathrm{is}\:\mathrm{independent}\:\mathrm{of}\:{a} \\ $$

Commented by TheHoneyCat last updated on 10/Apr/24

Really? So if d=c=b=0, the maximum value of a is 0? and not 1/3? hum...��

Commented by Frix last updated on 10/Apr/24

I only stated what I stated.

$$\mathrm{I}\:\mathrm{only}\:\mathrm{stated}\:\mathrm{what}\:\mathrm{I}\:\mathrm{stated}. \\ $$

Commented by TheHoneyCat last updated on 10/Apr/24

Ok, apology. I thought you meant f'(0)=c "is the maximum value of a"... ��

Answered by TheHoneyCat last updated on 10/Apr/24

f(x)=ax^3 +bx^2 +cx+d  f ′(x)=3ax^2 +2bx+c is an order two polynomial  It has an inflexion at :  x_0 :=((−b)/(3a))    if x_0 :=∉ ]0,1[, this function is monotonous.  it reaches its extrema at the edges  so those mxima are:  f ′(0)=c   and  f ′(1)=3a+2b+c  so an equivalent requirement to ∣f ′∣ is:  ∣c∣≤1 & ∣3a+2b+c∣≤1    if, however x_0 ∈]0,1[ the function is not monotonous.  but it is on [0,x_0 ] and [x_0 ,1] so we get the   folowing maxima:  f ′(0)=c  and f ′(x_0 )=(−/(18))(b^2 /a)  and f ′(1)=3a+2b+c  so an equivalent condition will be:  ∣c∣≤1 & b^2 ≤18∣a∣ &∣3a+2b+c∣≤1    To make things more simple, I will assume a≥0.  a<0 is messy especially because it can  lead to the maximum beeing a=0...  But if you want it, repost the question and I′ll  do it.  So (summerizing) either way, we have the  folowing equivalence:  ∣f ′(x)∣≤1  ⇔ ( ((−b)/(3a))∉[0,1] & ∣c∣≤1 & ∣3a+2b+c∣≤1)         or (((−b)/(3a))∈[0,1] & ∣c∣≤1 & ∣3a+2b+c∣≤1 & b^2 ≤18∣a∣)  ⇔∣c∣≤1 & ∣3a+2b+c∣≤1 &[(((−b)/(3a))∉[0,1]) or (((−b)/(3a))∈[0,1] & b^2 ≤18∣a∣)]  ⇔∣c∣≤1 & ∣3a+2b+c∣≤1 &[(((−b)/(3a))∉[0,1]) or b^2 ≤18∣a∣]  ⇔∣c∣≤1 & ∣3a+2b+c∣≤1 &[((−b)/(3a))≤0 or 1≤((−b)/(3a)) or b^2 ≤18∣a∣]  ⇔∣c∣≤1 & ∣3a+2b+c∣≤1 &[0≤b or (3a+b)≤0 or b^2 ≤18a]    This (last line) is the exact requirement  on the coeficients to have ∣f ′(x)∣≤1 over [0,1]  So we are simply looking for the biggest a verifying  these.  Notice that the part “∣c∣≤1” just does not  involve a...  Let us split the cases of the last term.    if 0≤b the only constraint on a is:  ∣3a+2b+c∣≤1  ⇔3a+2b+c∈[−1,1]  ⇔3a∈[−(2b+c+1),1−2b−c]  ⇔a∈[−(2b+c+1)/3,(1−2b−c)/3]  so if 2b+c<1 then the max  value of a will be  ((1−2b−c)/3)  (if 2b+c>1 we just don′t get an a from this  part of the formula)        If 3a+b≤0 ⇔a∈[0,−b/3]  (so b has to be negtive)  reusing previous computations we know:  a∈[((−2b−c−1)/3),((−2b−c+1)/3)]  if 2b+c<1 we get that the max value of  a is Min{−b/3, (−2b−c+1)/3}  =((−2b)/3)+Min{b/3,(1−c)/3}  Since ∣c∣≤1 in every case, and in the current  case b≤0, it is obvious that we get:  ((1−2b−c)/3) again.  Last but not least b^2 ≤18a does not constraint  the maximal value of a. So if it exist in the case of  this inequality, the maximum also has to be  ((1−2b−c)/3) again.      To conclude, in the case of the requirement  a>0 the maximal value that can be taken by  a while ∣f ′(x)∣≤1 on [0,1] is:  a_(Max) := ((1−2b−c)/3)  of course, if 2b+c≥1 that will break a>0.  This conclude the discussion. _□

$${f}\left({x}\right)={ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d} \\ $$$${f}\:'\left({x}\right)=\mathrm{3}{ax}^{\mathrm{2}} +\mathrm{2}{bx}+{c}\:\mathrm{is}\:\mathrm{an}\:\mathrm{order}\:\mathrm{two}\:\mathrm{polynomial} \\ $$$$\mathrm{It}\:\mathrm{has}\:\mathrm{an}\:\mathrm{inflexion}\:\mathrm{at}\:: \\ $$$${x}_{\mathrm{0}} :=\frac{−{b}}{\mathrm{3}{a}} \\ $$$$ \\ $$$$\left.\mathrm{if}\:{x}_{\mathrm{0}} :=\notin\:\right]\mathrm{0},\mathrm{1}\left[,\:\mathrm{this}\:\mathrm{function}\:\mathrm{is}\:\mathrm{monotonous}.\right. \\ $$$$\mathrm{it}\:\mathrm{reaches}\:\mathrm{its}\:\mathrm{extrema}\:\mathrm{at}\:\mathrm{the}\:\mathrm{edges} \\ $$$$\mathrm{so}\:\mathrm{those}\:\mathrm{mxima}\:\mathrm{are}: \\ $$$${f}\:'\left(\mathrm{0}\right)={c}\:\:\:\mathrm{and}\:\:{f}\:'\left(\mathrm{1}\right)=\mathrm{3}{a}+\mathrm{2}{b}+{c} \\ $$$$\mathrm{so}\:\mathrm{an}\:\mathrm{equivalent}\:\mathrm{requirement}\:\mathrm{to}\:\mid{f}\:'\mid\:\mathrm{is}: \\ $$$$\mid{c}\mid\leqslant\mathrm{1}\:\&\:\mid\mathrm{3}{a}+\mathrm{2}{b}+{c}\mid\leqslant\mathrm{1} \\ $$$$ \\ $$$$\left.\mathrm{if},\:\mathrm{however}\:{x}_{\mathrm{0}} \in\right]\mathrm{0},\mathrm{1}\left[\:\mathrm{the}\:\mathrm{function}\:\mathrm{is}\:{not}\:\mathrm{monotonous}.\right. \\ $$$$\mathrm{but}\:\mathrm{it}\:\mathrm{is}\:\mathrm{on}\:\left[\mathrm{0},{x}_{\mathrm{0}} \right]\:\mathrm{and}\:\left[{x}_{\mathrm{0}} ,\mathrm{1}\right]\:\mathrm{so}\:\mathrm{we}\:\mathrm{get}\:\mathrm{the}\: \\ $$$$\mathrm{folowing}\:\mathrm{maxima}: \\ $$$${f}\:'\left(\mathrm{0}\right)={c}\:\:\mathrm{and}\:{f}\:'\left({x}_{\mathrm{0}} \right)=\frac{−}{\mathrm{18}}\frac{{b}^{\mathrm{2}} }{{a}}\:\:\mathrm{and}\:{f}\:'\left(\mathrm{1}\right)=\mathrm{3}{a}+\mathrm{2}{b}+{c} \\ $$$$\mathrm{so}\:\mathrm{an}\:\mathrm{equivalent}\:\mathrm{condition}\:\mathrm{will}\:\mathrm{be}: \\ $$$$\mid{c}\mid\leqslant\mathrm{1}\:\&\:{b}^{\mathrm{2}} \leqslant\mathrm{18}\mid{a}\mid\:\&\mid\mathrm{3}{a}+\mathrm{2}{b}+{c}\mid\leqslant\mathrm{1} \\ $$$$ \\ $$$$\mathrm{To}\:\mathrm{make}\:\mathrm{things}\:\mathrm{more}\:\mathrm{simple},\:\mathrm{I}\:\mathrm{will}\:\mathrm{assume}\:{a}\geqslant\mathrm{0}. \\ $$$${a}<\mathrm{0}\:\mathrm{is}\:\mathrm{messy}\:\mathrm{especially}\:\mathrm{because}\:\mathrm{it}\:\mathrm{can} \\ $$$$\mathrm{lead}\:\mathrm{to}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{beeing}\:{a}=\mathrm{0}... \\ $$$$\mathrm{But}\:\mathrm{if}\:\mathrm{you}\:\mathrm{want}\:\mathrm{it},\:\mathrm{repost}\:\mathrm{the}\:\mathrm{question}\:\mathrm{and}\:\mathrm{I}'\mathrm{ll} \\ $$$$\mathrm{do}\:\mathrm{it}. \\ $$$$\mathrm{So}\:\left({summerizing}\right)\:\mathrm{either}\:\mathrm{way},\:\mathrm{we}\:\mathrm{have}\:\mathrm{the} \\ $$$$\mathrm{folowing}\:\mathrm{equivalence}: \\ $$$$\mid{f}\:'\left({x}\right)\mid\leqslant\mathrm{1} \\ $$$$\Leftrightarrow\:\left(\:\frac{−{b}}{\mathrm{3}{a}}\notin\left[\mathrm{0},\mathrm{1}\right]\:\&\:\mid{c}\mid\leqslant\mathrm{1}\:\&\:\mid\mathrm{3}{a}+\mathrm{2}{b}+{c}\mid\leqslant\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\mathrm{or}\:\left(\frac{−{b}}{\mathrm{3}{a}}\in\left[\mathrm{0},\mathrm{1}\right]\:\&\:\mid{c}\mid\leqslant\mathrm{1}\:\&\:\mid\mathrm{3}{a}+\mathrm{2}{b}+{c}\mid\leqslant\mathrm{1}\:\&\:{b}^{\mathrm{2}} \leqslant\mathrm{18}\mid{a}\mid\right) \\ $$$$\Leftrightarrow\mid{c}\mid\leqslant\mathrm{1}\:\&\:\mid\mathrm{3}{a}+\mathrm{2}{b}+{c}\mid\leqslant\mathrm{1}\:\&\left[\left(\frac{−{b}}{\mathrm{3}{a}}\notin\left[\mathrm{0},\mathrm{1}\right]\right)\:\mathrm{or}\:\left(\frac{−{b}}{\mathrm{3}{a}}\in\left[\mathrm{0},\mathrm{1}\right]\:\&\:{b}^{\mathrm{2}} \leqslant\mathrm{18}\mid{a}\mid\right)\right] \\ $$$$\Leftrightarrow\mid{c}\mid\leqslant\mathrm{1}\:\&\:\mid\mathrm{3}{a}+\mathrm{2}{b}+{c}\mid\leqslant\mathrm{1}\:\&\left[\left(\frac{−{b}}{\mathrm{3}{a}}\notin\left[\mathrm{0},\mathrm{1}\right]\right)\:\mathrm{or}\:{b}^{\mathrm{2}} \leqslant\mathrm{18}\mid{a}\mid\right] \\ $$$$\Leftrightarrow\mid{c}\mid\leqslant\mathrm{1}\:\&\:\mid\mathrm{3}{a}+\mathrm{2}{b}+{c}\mid\leqslant\mathrm{1}\:\&\left[\frac{−{b}}{\mathrm{3}{a}}\leqslant\mathrm{0}\:\mathrm{or}\:\mathrm{1}\leqslant\frac{−{b}}{\mathrm{3}{a}}\:\mathrm{or}\:{b}^{\mathrm{2}} \leqslant\mathrm{18}\mid{a}\mid\right] \\ $$$$\Leftrightarrow\mid{c}\mid\leqslant\mathrm{1}\:\&\:\mid\mathrm{3}{a}+\mathrm{2}{b}+{c}\mid\leqslant\mathrm{1}\:\&\left[\mathrm{0}\leqslant{b}\:\mathrm{or}\:\left(\mathrm{3}{a}+{b}\right)\leqslant\mathrm{0}\:\mathrm{or}\:{b}^{\mathrm{2}} \leqslant\mathrm{18}{a}\right] \\ $$$$ \\ $$$$\mathrm{This}\:\left(\mathrm{last}\:\mathrm{line}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{requirement} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{coeficients}\:\mathrm{to}\:\mathrm{have}\:\mid{f}\:'\left({x}\right)\mid\leqslant\mathrm{1}\:\mathrm{over}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\mathrm{So}\:\mathrm{we}\:\mathrm{are}\:\mathrm{simply}\:\mathrm{looking}\:\mathrm{for}\:\mathrm{the}\:\mathrm{biggest}\:{a}\:\mathrm{verifying} \\ $$$$\mathrm{these}. \\ $$$$\mathrm{Notice}\:\mathrm{that}\:\mathrm{the}\:\mathrm{part}\:``\mid{c}\mid\leqslant\mathrm{1}''\:\mathrm{just}\:\mathrm{does}\:\mathrm{not} \\ $$$$\mathrm{involve}\:{a}... \\ $$$$\mathrm{Let}\:\mathrm{us}\:\mathrm{split}\:\mathrm{the}\:\mathrm{cases}\:\mathrm{of}\:\mathrm{the}\:\mathrm{last}\:\mathrm{term}. \\ $$$$ \\ $$$$\mathrm{if}\:\mathrm{0}\leqslant{b}\:\mathrm{the}\:\mathrm{only}\:\mathrm{constraint}\:\mathrm{on}\:{a}\:\mathrm{is}: \\ $$$$\mid\mathrm{3}{a}+\mathrm{2}{b}+{c}\mid\leqslant\mathrm{1} \\ $$$$\Leftrightarrow\mathrm{3}{a}+\mathrm{2}{b}+{c}\in\left[−\mathrm{1},\mathrm{1}\right] \\ $$$$\Leftrightarrow\mathrm{3}{a}\in\left[−\left(\mathrm{2}{b}+{c}+\mathrm{1}\right),\mathrm{1}−\mathrm{2}{b}−{c}\right] \\ $$$$\Leftrightarrow{a}\in\left[−\left(\mathrm{2}{b}+{c}+\mathrm{1}\right)/\mathrm{3},\left(\mathrm{1}−\mathrm{2}{b}−{c}\right)/\mathrm{3}\right] \\ $$$$\mathrm{so}\:\mathrm{if}\:\mathrm{2}{b}+{c}<\mathrm{1}\:\mathrm{then}\:\mathrm{the}\:\mathrm{max} \\ $$$$\mathrm{value}\:\mathrm{of}\:{a}\:\mathrm{will}\:\mathrm{be}\:\:\frac{\mathrm{1}−\mathrm{2}{b}−{c}}{\mathrm{3}} \\ $$$$\left(\mathrm{if}\:\mathrm{2}{b}+{c}>\mathrm{1}\:\mathrm{we}\:\mathrm{just}\:\mathrm{don}'\mathrm{t}\:\mathrm{get}\:\mathrm{an}\:{a}\:\mathrm{from}\:\mathrm{this}\right. \\ $$$$\left.\mathrm{part}\:\mathrm{of}\:\mathrm{the}\:\mathrm{formula}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\mathrm{If}\:\mathrm{3}{a}+{b}\leqslant\mathrm{0}\:\Leftrightarrow{a}\in\left[\mathrm{0},−{b}/\mathrm{3}\right] \\ $$$$\left(\mathrm{so}\:{b}\:\mathrm{has}\:\mathrm{to}\:\mathrm{be}\:\mathrm{negtive}\right) \\ $$$$\mathrm{reusing}\:\mathrm{previous}\:\mathrm{computations}\:\mathrm{we}\:\mathrm{know}: \\ $$$${a}\in\left[\frac{−\mathrm{2}{b}−{c}−\mathrm{1}}{\mathrm{3}},\frac{−\mathrm{2}{b}−{c}+\mathrm{1}}{\mathrm{3}}\right] \\ $$$$\mathrm{if}\:\mathrm{2}{b}+{c}<\mathrm{1}\:\mathrm{we}\:\mathrm{get}\:\mathrm{that}\:\mathrm{the}\:\mathrm{max}\:\mathrm{value}\:\mathrm{of} \\ $$$${a}\:\mathrm{is}\:\mathrm{Min}\left\{−{b}/\mathrm{3},\:\left(−\mathrm{2}{b}−{c}+\mathrm{1}\right)/\mathrm{3}\right\} \\ $$$$=\frac{−\mathrm{2}{b}}{\mathrm{3}}+\mathrm{Min}\left\{{b}/\mathrm{3},\left(\mathrm{1}−{c}\right)/\mathrm{3}\right\} \\ $$$$\mathrm{Since}\:\mid{c}\mid\leqslant\mathrm{1}\:\mathrm{in}\:\mathrm{every}\:\mathrm{case},\:\mathrm{and}\:\mathrm{in}\:\mathrm{the}\:\mathrm{current} \\ $$$$\mathrm{case}\:{b}\leqslant\mathrm{0},\:\mathrm{it}\:\mathrm{is}\:\mathrm{obvious}\:\mathrm{that}\:\mathrm{we}\:\mathrm{get}: \\ $$$$\frac{\mathrm{1}−\mathrm{2}{b}−{c}}{\mathrm{3}}\:\mathrm{again}. \\ $$$$\mathrm{Last}\:\mathrm{but}\:\mathrm{not}\:\mathrm{least}\:{b}^{\mathrm{2}} \leqslant\mathrm{18}{a}\:\mathrm{does}\:\mathrm{not}\:\mathrm{constraint} \\ $$$$\mathrm{the}\:\mathrm{maximal}\:\mathrm{value}\:\mathrm{of}\:{a}.\:\mathrm{So}\:\mathrm{if}\:\mathrm{it}\:\mathrm{exist}\:\mathrm{in}\:\mathrm{the}\:\mathrm{case}\:\mathrm{of} \\ $$$$\mathrm{this}\:\mathrm{inequality},\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{also}\:\mathrm{has}\:\mathrm{to}\:\mathrm{be} \\ $$$$\frac{\mathrm{1}−\mathrm{2}{b}−{c}}{\mathrm{3}}\:\mathrm{again}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{To}\:\mathrm{conclude},\:\mathrm{in}\:\mathrm{the}\:\mathrm{case}\:\mathrm{of}\:\mathrm{the}\:\mathrm{requirement} \\ $$$${a}>\mathrm{0}\:\mathrm{the}\:\mathrm{maximal}\:\mathrm{value}\:\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{taken}\:\mathrm{by} \\ $$$${a}\:\mathrm{while}\:\mid{f}\:'\left({x}\right)\mid\leqslant\mathrm{1}\:\mathrm{on}\:\left[\mathrm{0},\mathrm{1}\right]\:\mathrm{is}: \\ $$$${a}_{\mathrm{Max}} :=\:\frac{\mathrm{1}−\mathrm{2}{b}−{c}}{\mathrm{3}} \\ $$$$\mathrm{of}\:\mathrm{course},\:\mathrm{if}\:\mathrm{2}{b}+{c}\geqslant\mathrm{1}\:\mathrm{that}\:\mathrm{will}\:\mathrm{break}\:{a}>\mathrm{0}. \\ $$$$\mathrm{This}\:\mathrm{conclude}\:\mathrm{the}\:\mathrm{discussion}.\:_{\Box} \\ $$

Answered by Frix last updated on 10/Apr/24

f′(x)=g(x)=3ax^2 +2bx+c  a → max ⇒ a>0 ⇒  g(x) has an absolute min at x_0 =−(b/(3a))    Case 1: −(b/(3a))∉]0, 1[  To get the steepest possible parabola let  g(0)=−1∧g(1)=1 ( _(the same a)^(g(0)=1∧g(1)=−1 leads to) )  ⇒  b=1−((3a)/2)∧c=−1 ⇒ x_0 =(1/2)−(1/(3a))  x_0 ≤0∨1≤x_0  ⇒ a≤(2/3)  witb a=(2/3)  g(x)=f′(x)=2x^2 −1 (or 2x^2 −4x+1)    Case 2: −(b/(3a))∈]0, 1[  a>0⇒b<0  g(−(b/(3a)))=−1∧g(1)=1 ()  ⇒  b=(√(6a))−3a∧c=3a−2(√(6a))+1 ⇒ x_0 =1−((√2)/( (√(3a))))  0<x_0 <1 ⇒ a>(2/3)  g(1)=1 ⇒ −1≤g(0)≤1  g(0)=c ⇒ −1≤3a−2(√(6a))+1≤1  ⇒ 0≤a≤(8/3)  ⇒ a_(max) =(8/3)  g(x)=f′(x)=8x^2 −8x+1

$${f}'\left({x}\right)={g}\left({x}\right)=\mathrm{3}{ax}^{\mathrm{2}} +\mathrm{2}{bx}+{c} \\ $$$${a}\:\rightarrow\:\mathrm{max}\:\Rightarrow\:{a}>\mathrm{0}\:\Rightarrow \\ $$$${g}\left({x}\right)\:\mathrm{has}\:\mathrm{an}\:\mathrm{absolute}\:\mathrm{min}\:\mathrm{at}\:{x}_{\mathrm{0}} =−\frac{{b}}{\mathrm{3}{a}} \\ $$$$ \\ $$$$\left.\mathrm{Case}\:\mathrm{1}:\:−\frac{{b}}{\mathrm{3}{a}}\notin\right]\mathrm{0},\:\mathrm{1}\left[\right. \\ $$$$\mathrm{To}\:\mathrm{get}\:\mathrm{the}\:\mathrm{steepest}\:\mathrm{possible}\:\mathrm{parabola}\:\mathrm{let} \\ $$$${g}\left(\mathrm{0}\right)=−\mathrm{1}\wedge{g}\left(\mathrm{1}\right)=\mathrm{1}\:\left(\:_{\mathrm{the}\:\mathrm{same}\:{a}} ^{{g}\left(\mathrm{0}\right)=\mathrm{1}\wedge{g}\left(\mathrm{1}\right)=−\mathrm{1}\:\mathrm{leads}\:\mathrm{to}} \right) \\ $$$$\Rightarrow \\ $$$${b}=\mathrm{1}−\frac{\mathrm{3}{a}}{\mathrm{2}}\wedge{c}=−\mathrm{1}\:\Rightarrow\:{x}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}{a}} \\ $$$${x}_{\mathrm{0}} \leqslant\mathrm{0}\vee\mathrm{1}\leqslant{x}_{\mathrm{0}} \:\Rightarrow\:{a}\leqslant\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{witb}\:{a}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${g}\left({x}\right)={f}'\left({x}\right)=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}\:\left(\mathrm{or}\:\mathrm{2}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}\right) \\ $$$$ \\ $$$$\left.\mathrm{Case}\:\mathrm{2}:\:−\frac{{b}}{\mathrm{3}{a}}\in\right]\mathrm{0},\:\mathrm{1}\left[\right. \\ $$$${a}>\mathrm{0}\Rightarrow{b}<\mathrm{0} \\ $$$${g}\left(−\frac{{b}}{\mathrm{3}{a}}\right)=−\mathrm{1}\wedge{g}\left(\mathrm{1}\right)=\mathrm{1}\:\left(\right) \\ $$$$\Rightarrow \\ $$$${b}=\sqrt{\mathrm{6}{a}}−\mathrm{3}{a}\wedge{c}=\mathrm{3}{a}−\mathrm{2}\sqrt{\mathrm{6}{a}}+\mathrm{1}\:\Rightarrow\:{x}_{\mathrm{0}} =\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{3}{a}}} \\ $$$$\mathrm{0}<{x}_{\mathrm{0}} <\mathrm{1}\:\Rightarrow\:{a}>\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${g}\left(\mathrm{1}\right)=\mathrm{1}\:\Rightarrow\:−\mathrm{1}\leqslant{g}\left(\mathrm{0}\right)\leqslant\mathrm{1} \\ $$$${g}\left(\mathrm{0}\right)={c}\:\Rightarrow\:−\mathrm{1}\leqslant\mathrm{3}{a}−\mathrm{2}\sqrt{\mathrm{6}{a}}+\mathrm{1}\leqslant\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{0}\leqslant{a}\leqslant\frac{\mathrm{8}}{\mathrm{3}} \\ $$$$\Rightarrow\:{a}_{\mathrm{max}} =\frac{\mathrm{8}}{\mathrm{3}} \\ $$$${g}\left({x}\right)={f}'\left({x}\right)=\mathrm{8}{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com