Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 20686 by NECx last updated on 31/Aug/17

∫(tanx)^(1/3) dx

$$\int\left({tanx}\right)^{\mathrm{1}/\mathrm{3}} {dx} \\ $$

Commented by NECx last updated on 01/Sep/17

please help

$${please}\:{help} \\ $$

Answered by ajfour last updated on 01/Sep/17

let  tan x= (1/t^3 )    ⇒  sec^2 xdx=((−3dt)/t^4 )   I=∫(tan x)^(1/3) dx = ∫(1/t)×((−3dt)/(t^4 (1+(1/t^6 ))))     =−3∫((tdt)/(1+t^6 ))   =−(3/2)∫((2tdt)/(1+(t^2 )^3 ))  let  t^2 =z   I=−(3/2)∫(dz/(1+z^3 )) =−(3/2)∫(dz/((1+z)(z^2 −z+1)))       =−(3/2)∫[((1/3)/(1+z))+((−1/3x+2/3)/(z^2 −z+1))]dz        =−(1/2)ln ∣1+z∣+(1/4)∫((2z−4)/(z^2 −z+1))dz      =−(1/2)ln ∣1+z∣+(1/4)∫((2z−1)/(z^2 −z+1))dz                                  −(3/4)∫(dz/((z−(1/2))^2 +(((√3)/2))^2 ))    =−(1/2)ln ∣1+z∣+(1/4)ln ∣z^2 −z+1∣                 −(3/4)((2/(√3)))tan^(−1) (((2z−1)/(√3))) +C     where     z=t^2  = (tan x)^(−2/3)  .

$${let}\:\:\mathrm{tan}\:{x}=\:\frac{\mathrm{1}}{{t}^{\mathrm{3}} }\:\:\:\:\Rightarrow\:\:\mathrm{sec}\:^{\mathrm{2}} {xdx}=\frac{−\mathrm{3}{dt}}{{t}^{\mathrm{4}} } \\ $$$$\:\boldsymbol{{I}}=\int\left(\mathrm{tan}\:{x}\right)^{\mathrm{1}/\mathrm{3}} {dx}\:=\:\int\frac{\mathrm{1}}{{t}}×\frac{−\mathrm{3}{dt}}{{t}^{\mathrm{4}} \left(\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{6}} }\right)} \\ $$$$\:\:\:=−\mathrm{3}\int\frac{{tdt}}{\mathrm{1}+{t}^{\mathrm{6}} }\:\:\:=−\frac{\mathrm{3}}{\mathrm{2}}\int\frac{\mathrm{2}{tdt}}{\mathrm{1}+\left({t}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$$${let}\:\:{t}^{\mathrm{2}} ={z}\: \\ $$$$\boldsymbol{{I}}=−\frac{\mathrm{3}}{\mathrm{2}}\int\frac{{dz}}{\mathrm{1}+{z}^{\mathrm{3}} }\:=−\frac{\mathrm{3}}{\mathrm{2}}\int\frac{{dz}}{\left(\mathrm{1}+{z}\right)\left({z}^{\mathrm{2}} −{z}+\mathrm{1}\right)} \\ $$$$\:\:\:\:\:=−\frac{\mathrm{3}}{\mathrm{2}}\int\left[\frac{\mathrm{1}/\mathrm{3}}{\mathrm{1}+{z}}+\frac{−\mathrm{1}/\mathrm{3}{x}+\mathrm{2}/\mathrm{3}}{{z}^{\mathrm{2}} −{z}+\mathrm{1}}\right]{dz} \\ $$$$\:\:\:\:\:\:=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mid\mathrm{1}+{z}\mid+\frac{\mathrm{1}}{\mathrm{4}}\int\frac{\mathrm{2}{z}−\mathrm{4}}{{z}^{\mathrm{2}} −{z}+\mathrm{1}}{dz} \\ $$$$\:\:\:\:=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mid\mathrm{1}+{z}\mid+\frac{\mathrm{1}}{\mathrm{4}}\int\frac{\mathrm{2}{z}−\mathrm{1}}{{z}^{\mathrm{2}} −{z}+\mathrm{1}}{dz} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\frac{\mathrm{3}}{\mathrm{4}}\int\frac{{dz}}{\left({z}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$\:\:=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mid\mathrm{1}+{z}\mid+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:\mid{z}^{\mathrm{2}} −{z}+\mathrm{1}\mid \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\frac{\mathrm{3}}{\mathrm{4}}\left(\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\right)\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{z}−\mathrm{1}}{\sqrt{\mathrm{3}}}\right)\:+{C} \\ $$$$\:\:\:{where}\:\:\:\:\:{z}={t}^{\mathrm{2}} \:=\:\left(\mathrm{tan}\:{x}\right)^{−\mathrm{2}/\mathrm{3}} \:. \\ $$

Answered by $@ty@m last updated on 01/Sep/17

Alternative method:  Let tanx=w^(3/2)  ⇒sec^2 xdx=(3/2)(√w)dw  ⇒dx=(3/2).(((√w)dw)/(1+w^3 ))  ∴∫(tanx)^(1/3) dx=(3/2)∫(w/(1+w^3 ))dw  =(3/2)∫(w/((1+w)(1−w+w^2 )))dw  Let (w/((1+w)(1−w+w^2 )))=(A/(1+w))+((Bw+C)/(1−w+w^2 ))  ⇒A(1−w+w^2 )+(Bw+C)(1+w)≡w  ⇒A+C=0, −A+B+C=1, A+B=0  ⇒B=C= (1/3), A=((−1)/3)  now proceed similar to above solution.

$${Alternative}\:{method}: \\ $$$${Let}\:{tanx}={w}^{\frac{\mathrm{3}}{\mathrm{2}}} \:\Rightarrow{sec}^{\mathrm{2}} {xdx}=\frac{\mathrm{3}}{\mathrm{2}}\sqrt{{w}}{dw} \\ $$$$\Rightarrow{dx}=\frac{\mathrm{3}}{\mathrm{2}}.\frac{\sqrt{{w}}{dw}}{\mathrm{1}+{w}^{\mathrm{3}} } \\ $$$$\therefore\int\left({tanx}\right)^{\mathrm{1}/\mathrm{3}} {dx}=\frac{\mathrm{3}}{\mathrm{2}}\int\frac{{w}}{\mathrm{1}+{w}^{\mathrm{3}} }{dw} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\int\frac{{w}}{\left(\mathrm{1}+{w}\right)\left(\mathrm{1}−{w}+{w}^{\mathrm{2}} \right)}{dw} \\ $$$${Let}\:\frac{{w}}{\left(\mathrm{1}+{w}\right)\left(\mathrm{1}−{w}+{w}^{\mathrm{2}} \right)}=\frac{{A}}{\mathrm{1}+{w}}+\frac{{Bw}+{C}}{\mathrm{1}−{w}+{w}^{\mathrm{2}} } \\ $$$$\Rightarrow{A}\left(\mathrm{1}−{w}+{w}^{\mathrm{2}} \right)+\left({Bw}+{C}\right)\left(\mathrm{1}+{w}\right)\equiv{w} \\ $$$$\Rightarrow{A}+{C}=\mathrm{0},\:−{A}+{B}+{C}=\mathrm{1},\:{A}+{B}=\mathrm{0} \\ $$$$\Rightarrow{B}={C}=\:\frac{\mathrm{1}}{\mathrm{3}},\:{A}=\frac{−\mathrm{1}}{\mathrm{3}} \\ $$$${now}\:{proceed}\:{similar}\:{to}\:{above}\:{solution}. \\ $$

Commented by NECx last updated on 01/Sep/17

wow.... i really appreciate this.

$${wow}....\:{i}\:{really}\:{appreciate}\:{this}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com