Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 2071 by Rasheed Soomro last updated on 01/Nov/15

{ [f(x)]^(−1) }′ =[ f ′(x) ]^(−1)   f(x)=?

$$\left\{\:\left[{f}\left({x}\right)\right]^{−\mathrm{1}} \right\}'\:=\left[\:{f}\:'\left({x}\right)\:\right]^{−\mathrm{1}} \\ $$$${f}\left({x}\right)=? \\ $$

Commented by Yozzi last updated on 01/Nov/15

(d/dx)((1/(f(x))))=(1/(f^′ (x)))  ((f(x)×0−f^′ (x))/((f(x))^2 ))=(1/(f^′ (x)))  −(f^′ (x))^2 =(f(x))^2   (f(x))^2 +(f^′ (x))^2 =0  f(x)=±if^′ (x)  1=±((if^′ (x))/(f(x)))  ∫1dx=±i∫((f^′ (x))/(f(x)))dx  ±iln∣f(x)∣=x+c  ln∣f(x)∣=∓(i(x+c))  f(x)=e^(∓i(x+c))   f(x)=cos(x+c)+isin(x+c)  or  f(x)=cos(x+c)−isin(x+c)  f^′ (x)=ie^(i(x+c)) ⇒(1/(f^′ (x)))=−ie^(−i(x+c))   (1/(f(x)))=e^(−i(x+c)) ⇒(d/dx)((1/(f(x))))=−ie^(−i(x+c) =f^′ (x)

$$\frac{{d}}{{dx}}\left(\frac{\mathrm{1}}{{f}\left({x}\right)}\right)=\frac{\mathrm{1}}{{f}^{'} \left({x}\right)} \\ $$$$\frac{{f}\left({x}\right)×\mathrm{0}−{f}^{'} \left({x}\right)}{\left({f}\left({x}\right)\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{{f}^{'} \left({x}\right)} \\ $$$$−\left({f}^{'} \left({x}\right)\right)^{\mathrm{2}} =\left({f}\left({x}\right)\right)^{\mathrm{2}} \\ $$$$\left({f}\left({x}\right)\right)^{\mathrm{2}} +\left({f}^{'} \left({x}\right)\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${f}\left({x}\right)=\pm{if}^{'} \left({x}\right) \\ $$$$\mathrm{1}=\pm\frac{{if}^{'} \left({x}\right)}{{f}\left({x}\right)} \\ $$$$\int\mathrm{1}{dx}=\pm{i}\int\frac{{f}^{'} \left({x}\right)}{{f}\left({x}\right)}{dx} \\ $$$$\pm{iln}\mid{f}\left({x}\right)\mid={x}+{c} \\ $$$${ln}\mid{f}\left({x}\right)\mid=\mp\left({i}\left({x}+{c}\right)\right) \\ $$$${f}\left({x}\right)={e}^{\mp{i}\left({x}+{c}\right)} \\ $$$${f}\left({x}\right)={cos}\left({x}+{c}\right)+{isin}\left({x}+{c}\right) \\ $$$${or} \\ $$$${f}\left({x}\right)={cos}\left({x}+{c}\right)−{isin}\left({x}+{c}\right) \\ $$$${f}^{'} \left({x}\right)={ie}^{{i}\left({x}+{c}\right)} \Rightarrow\frac{\mathrm{1}}{{f}^{'} \left({x}\right)}=−{ie}^{−{i}\left({x}+{c}\right)} \\ $$$$\frac{\mathrm{1}}{{f}\left({x}\right)}={e}^{−{i}\left({x}+{c}\right)} \Rightarrow\frac{{d}}{{dx}}\left(\frac{\mathrm{1}}{{f}\left({x}\right)}\right)=−{ie}^{−{i}\left({x}+{c}\right.} ={f}^{'} \left({x}\right) \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 01/Nov/15

Like your approach!

$$\mathcal{L}{ike}\:{your}\:{approach}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com