Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 20785 by Tinkutara last updated on 02/Sep/17

If in a ΔABC, tan(A/2), tan(B/2) and tan(C/2)  are in HP, then the minimum value of  cot(B/2) is greater than  (1) 2(√3)  (2) ((√3)/2)  (3) (√3)  (4) (1/(√3))

$$\mathrm{If}\:\mathrm{in}\:\mathrm{a}\:\Delta{ABC},\:\mathrm{tan}\frac{{A}}{\mathrm{2}},\:\mathrm{tan}\frac{{B}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{tan}\frac{{C}}{\mathrm{2}} \\ $$$$\mathrm{are}\:\mathrm{in}\:\mathrm{HP},\:\mathrm{then}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{cot}\frac{{B}}{\mathrm{2}}\:\mathrm{is}\:\mathrm{greater}\:\mathrm{than} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{2}\sqrt{\mathrm{3}} \\ $$$$\left(\mathrm{2}\right)\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\left(\mathrm{3}\right)\:\sqrt{\mathrm{3}} \\ $$$$\left(\mathrm{4}\right)\:\frac{\mathrm{1}}{\sqrt{\mathrm{3}}} \\ $$

Answered by ajfour last updated on 03/Sep/17

let us call    tan (A/2)=x, tan (B/2)=y,  tan (C/2)=z .      given x, y, z are in H.P.  ⇒   y=((2xz)/(x+z))    ......(i)     tan ((A/2)+(B/2)+(C/2))=((Σtan (A/2)−Πtan (A/2))/(1−Σtan (A/2)tan (B/2)))  ⇒   1−Σxy=0  or    y(x+z)+xz=1                      y=((1−xz)/(x+z))     ......(ii)  from (i) and (ii) it follows that       2xz=1−xz     ⇒    xz=(1/3)       we know that A.M. ≥ G.M.       (((x+z)/2))^2  ≥ xz   ......(iii)     y= ((2xz)/(x+z))     [eq.(i)]  and xz=1/3  ⇒  x+z=(2/(3y)) ; using this in (iii)         ((1/(3y)))^2  ≥(1/3)    ⇒   (1/y) ≥ (√3)   ⇒    cot (B/2) ≥ (√3) .

$${let}\:{us}\:{call}\:\:\:\:\mathrm{tan}\:\frac{{A}}{\mathrm{2}}={x},\:\mathrm{tan}\:\frac{{B}}{\mathrm{2}}={y}, \\ $$$$\mathrm{tan}\:\frac{{C}}{\mathrm{2}}={z}\:. \\ $$$$\:\:\:\:{given}\:{x},\:{y},\:{z}\:{are}\:{in}\:{H}.{P}. \\ $$$$\Rightarrow\:\:\:{y}=\frac{\mathrm{2}{xz}}{{x}+{z}}\:\:\:\:......\left({i}\right) \\ $$$$\:\:\:\mathrm{tan}\:\left(\frac{{A}}{\mathrm{2}}+\frac{{B}}{\mathrm{2}}+\frac{{C}}{\mathrm{2}}\right)=\frac{\Sigma\mathrm{tan}\:\frac{{A}}{\mathrm{2}}−\Pi\mathrm{tan}\:\frac{{A}}{\mathrm{2}}}{\mathrm{1}−\Sigma\mathrm{tan}\:\frac{{A}}{\mathrm{2}}\mathrm{tan}\:\frac{{B}}{\mathrm{2}}} \\ $$$$\Rightarrow\:\:\:\mathrm{1}−\Sigma{xy}=\mathrm{0} \\ $$$${or}\:\:\:\:{y}\left({x}+{z}\right)+{xz}=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}=\frac{\mathrm{1}−{xz}}{{x}+{z}}\:\:\:\:\:......\left({ii}\right) \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right)\:{it}\:{follows}\:{that} \\ $$$$\:\:\:\:\:\mathrm{2}{xz}=\mathrm{1}−{xz}\:\:\:\:\:\Rightarrow\:\:\:\:{xz}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:\:\:\:\:{we}\:{know}\:{that}\:{A}.{M}.\:\geqslant\:{G}.{M}. \\ $$$$\:\:\:\:\:\left(\frac{{x}+{z}}{\mathrm{2}}\right)^{\mathrm{2}} \:\geqslant\:{xz}\:\:\:......\left({iii}\right) \\ $$$$\:\:\:{y}=\:\frac{\mathrm{2}{xz}}{{x}+{z}}\:\:\:\:\:\left[{eq}.\left({i}\right)\right]\:\:{and}\:{xz}=\mathrm{1}/\mathrm{3} \\ $$$$\Rightarrow\:\:{x}+{z}=\frac{\mathrm{2}}{\mathrm{3}{y}}\:;\:{using}\:{this}\:{in}\:\left({iii}\right) \\ $$$$\:\:\:\:\:\:\:\left(\frac{\mathrm{1}}{\mathrm{3}{y}}\right)^{\mathrm{2}} \:\geqslant\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\:\Rightarrow\:\:\:\frac{\mathrm{1}}{{y}}\:\geqslant\:\sqrt{\mathrm{3}}\: \\ $$$$\Rightarrow\:\:\:\:\mathrm{cot}\:\frac{{B}}{\mathrm{2}}\:\geqslant\:\sqrt{\mathrm{3}}\:. \\ $$$$ \\ $$

Commented by Tinkutara last updated on 03/Sep/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com