Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 21131 by Tinkutara last updated on 13/Sep/17

Figure shows a small bob of mass m  suspended from a point on a thin rod  by a light inextensible string of length  l. The rod is rigidly fixed on a circular  platform. The platform is set into  rotation. The minimum angular speed  ω, for which the bob loses contact with  the vertical rod, is  (1) (√(g/l))  (2) (√((2g)/l))  (3) (√(g/(2l)))  (4) (√(g/(4l)))

$$\mathrm{Figure}\:\mathrm{shows}\:\mathrm{a}\:\mathrm{small}\:\mathrm{bob}\:\mathrm{of}\:\mathrm{mass}\:{m} \\ $$$$\mathrm{suspended}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{a}\:\mathrm{thin}\:\mathrm{rod} \\ $$$$\mathrm{by}\:\mathrm{a}\:\mathrm{light}\:\mathrm{inextensible}\:\mathrm{string}\:\mathrm{of}\:\mathrm{length} \\ $$$${l}.\:\mathrm{The}\:\mathrm{rod}\:\mathrm{is}\:\mathrm{rigidly}\:\mathrm{fixed}\:\mathrm{on}\:\mathrm{a}\:\mathrm{circular} \\ $$$$\mathrm{platform}.\:\mathrm{The}\:\mathrm{platform}\:\mathrm{is}\:\mathrm{set}\:\mathrm{into} \\ $$$$\mathrm{rotation}.\:\mathrm{The}\:\mathrm{minimum}\:\mathrm{angular}\:\mathrm{speed} \\ $$$$\omega,\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{bob}\:\mathrm{loses}\:\mathrm{contact}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{vertical}\:\mathrm{rod},\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\sqrt{\frac{{g}}{{l}}} \\ $$$$\left(\mathrm{2}\right)\:\sqrt{\frac{\mathrm{2}{g}}{{l}}} \\ $$$$\left(\mathrm{3}\right)\:\sqrt{\frac{{g}}{\mathrm{2}{l}}} \\ $$$$\left(\mathrm{4}\right)\:\sqrt{\frac{{g}}{\mathrm{4}{l}}} \\ $$

Commented by ajfour last updated on 13/Sep/17

sin θ ≈ θ =(r/l)  Tcos θ ≈ T=mg  Tsin θ ≈ Tθ = T ((r/l))=mω^2 r  ⇒    mg((r/l))=mω^2 r  or   ω=(√(g/l)) .   option (1).

$$\mathrm{sin}\:\theta\:\approx\:\theta\:=\frac{{r}}{{l}} \\ $$$${T}\mathrm{cos}\:\theta\:\approx\:{T}={mg} \\ $$$${T}\mathrm{sin}\:\theta\:\approx\:{T}\theta\:=\:{T}\:\left(\frac{{r}}{{l}}\right)={m}\omega^{\mathrm{2}} {r} \\ $$$$\Rightarrow\:\:\:\:{mg}\left(\frac{{r}}{{l}}\right)={m}\omega^{\mathrm{2}} {r} \\ $$$${or}\:\:\:\omega=\sqrt{\frac{{g}}{{l}}}\:.\:\:\:{option}\:\left(\mathrm{1}\right). \\ $$

Commented by ajfour last updated on 13/Sep/17

Commented by Tinkutara last updated on 13/Sep/17

Commented by Tinkutara last updated on 13/Sep/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com