Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 22456 by Tinkutara last updated on 18/Oct/17

A long plank begins to move at t = 0  and accelerates along a straight track  with a speed given by v = 2t^2  for 0 ≤ t  ≤ 2. After 2 s, the plank continues to  move at the constant speed acquired.  A small block initially at rest on the  plank begins to slip at t = 1 s and stops  sliding at t = 3 s. Find the coefficient of  static and kinetic friction between the  block and the plank.

$$\mathrm{A}\:\mathrm{long}\:\mathrm{plank}\:\mathrm{begins}\:\mathrm{to}\:\mathrm{move}\:\mathrm{at}\:{t}\:=\:\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{accelerates}\:\mathrm{along}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{track} \\ $$$$\mathrm{with}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{given}\:\mathrm{by}\:{v}\:=\:\mathrm{2}{t}^{\mathrm{2}} \:\mathrm{for}\:\mathrm{0}\:\leqslant\:{t} \\ $$$$\leqslant\:\mathrm{2}.\:\mathrm{After}\:\mathrm{2}\:\mathrm{s},\:\mathrm{the}\:\mathrm{plank}\:\mathrm{continues}\:\mathrm{to} \\ $$$$\mathrm{move}\:\mathrm{at}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{speed}\:\mathrm{acquired}. \\ $$$$\mathrm{A}\:\mathrm{small}\:\mathrm{block}\:\mathrm{initially}\:\mathrm{at}\:\mathrm{rest}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{plank}\:\mathrm{begins}\:\mathrm{to}\:\mathrm{slip}\:\mathrm{at}\:{t}\:=\:\mathrm{1}\:\mathrm{s}\:\mathrm{and}\:\mathrm{stops} \\ $$$$\mathrm{sliding}\:\mathrm{at}\:{t}\:=\:\mathrm{3}\:\mathrm{s}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of} \\ $$$$\mathrm{static}\:\mathrm{and}\:\mathrm{kinetic}\:\mathrm{friction}\:\mathrm{between}\:\mathrm{the} \\ $$$$\mathrm{block}\:\mathrm{and}\:\mathrm{the}\:\mathrm{plank}. \\ $$

Answered by ajfour last updated on 18/Oct/17

Acceleration of plank A=4t  (acceleration)_(max)  of block =((μ_s mg)/m)  =μ_s g   given: block begins sliding at t=1s  means velocity and hence acc-  eleration of plank exceeds that  of block. block lags behind w.r.t.  plank.  ⇒   μ_s g=4(1s) ⇒  𝛍_s =0.4  At t=1s relative velocity of block  is zero.  At t=2s    it is          =∫_1 ^(  2) a_r dt =∫_1 ^(  2) (μ_k g−4t)dt          =μ_k g−6  v_r =u_r +a_r △t    ; After t=2s,  a_r = μ_k g−0  ⇒   v_r =(−6+𝛍_k g)+𝛍_k g△t  since at t=3s v_r =0 , with △t=1s  we have    0=−6+2μ_k g  or       𝛍_k =0.3

$${Acceleration}\:{of}\:{plank}\:\boldsymbol{{A}}=\mathrm{4}\boldsymbol{{t}} \\ $$$$\left({acceleration}\right)_{{max}} \:{of}\:{block}\:=\frac{\mu_{{s}} {mg}}{{m}} \\ $$$$=\mu_{{s}} {g}\: \\ $$$${given}:\:{block}\:{begins}\:{sliding}\:{at}\:\boldsymbol{{t}}=\mathrm{1}\boldsymbol{{s}} \\ $$$${means}\:{velocity}\:{and}\:{hence}\:{acc}- \\ $$$${eleration}\:{of}\:{plank}\:{exceeds}\:{that} \\ $$$${of}\:{block}.\:{block}\:{lags}\:{behind}\:{w}.{r}.{t}. \\ $$$${plank}. \\ $$$$\Rightarrow\:\:\:\mu_{{s}} {g}=\mathrm{4}\left(\mathrm{1}{s}\right)\:\Rightarrow\:\:\boldsymbol{\mu}_{\boldsymbol{{s}}} =\mathrm{0}.\mathrm{4} \\ $$$${At}\:{t}=\mathrm{1}{s}\:{relative}\:{velocity}\:{of}\:{block} \\ $$$${is}\:{zero}. \\ $$$${At}\:{t}=\mathrm{2}{s}\:\:\:\:{it}\:{is} \\ $$$$\:\:\:\:\:\:\:\:=\int_{\mathrm{1}} ^{\:\:\mathrm{2}} {a}_{{r}} {dt}\:=\int_{\mathrm{1}} ^{\:\:\mathrm{2}} \left(\mu_{{k}} {g}−\mathrm{4}{t}\right){dt} \\ $$$$\:\:\:\:\:\:\:\:=\mu_{{k}} {g}−\mathrm{6} \\ $$$${v}_{{r}} ={u}_{{r}} +{a}_{{r}} \bigtriangleup{t}\:\:\:\:;\:{After}\:{t}=\mathrm{2}{s}, \\ $$$${a}_{{r}} =\:\mu_{{k}} {g}−\mathrm{0} \\ $$$$\Rightarrow\:\:\:\boldsymbol{{v}}_{\boldsymbol{{r}}} =\left(−\mathrm{6}+\boldsymbol{\mu}_{\boldsymbol{{k}}} \boldsymbol{{g}}\right)+\boldsymbol{\mu}_{{k}} \boldsymbol{{g}}\bigtriangleup\boldsymbol{{t}} \\ $$$${since}\:{at}\:\boldsymbol{{t}}=\mathrm{3}\boldsymbol{{s}}\:\boldsymbol{{v}}_{\boldsymbol{{r}}} =\mathrm{0}\:,\:{with}\:\bigtriangleup{t}=\mathrm{1}{s} \\ $$$${we}\:{have}\:\:\:\:\mathrm{0}=−\mathrm{6}+\mathrm{2}\mu_{{k}} {g} \\ $$$${or}\:\:\:\:\:\:\:\boldsymbol{\mu}_{\boldsymbol{{k}}} =\mathrm{0}.\mathrm{3} \\ $$$$\:\:\: \\ $$

Commented by Tinkutara last updated on 18/Oct/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com