Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 2362 by 123456 last updated on 18/Nov/15

f:C→C,(a,b)∈R^2 ,a<b  f(z−a)=f(b−z)sin ((zπ)/(b−a))  f(z)=z^2 ,ℜ(z)≥((a+b)/2)  f(z)=0,z=?

$${f}:\mathbb{C}\rightarrow\mathbb{C},\left({a},{b}\right)\in\mathbb{R}^{\mathrm{2}} ,{a}<{b} \\ $$ $${f}\left({z}−{a}\right)={f}\left({b}−{z}\right)\mathrm{sin}\:\frac{{z}\pi}{{b}−{a}} \\ $$ $${f}\left({z}\right)={z}^{\mathrm{2}} ,\Re\left({z}\right)\geqslant\frac{{a}+{b}}{\mathrm{2}} \\ $$ $${f}\left({z}\right)=\mathrm{0},{z}=? \\ $$

Commented byRasheed Soomro last updated on 20/Nov/15

Let a=0 then b>0:  f(z−a)=f(b−z)sin ((zπ)/(b−a))⇒f(z)=f(b−z)sin ((zπ)/b)=0 if f(z)=0  ⇒f(b−z)=0 ∣{ sin ((zπ)/b)=0⇒((zπ)/b)=sin^(−1) 0⇒z=0}  f(z)=0⇒z=0 is one solution.  For a=0 and b>0       f(z)=f(b−z)sin ((zπ)/b).............(i)       f(b−z)=f(b−b−z^(−) )sin(((b−z)π)/b)                           =f(z)sin(((b−z)π)/b).......(ii)  From (i) and (ii)      f(z)=(f(z)sin(((b−z)π)/b))sin ((zπ)/b)      (sin(((b−z)π)/b))(sin ((zπ)/b))=1      (1/2){cos((((b−z)π)/b)−((zπ)/b))−cos((((b−z)π)/b)+((zπ)/b))}=1      (1/2){cos((((b−z−z)π)/b))−cos((((b−z+z)π)/b))}=1      cos((((b−2z)π)/b))−cos((π)=2      cos((((b−2z)π)/b))+1=2      cos((((b−2z)π)/b))=1     (((b−2z)π)/b)=cos^(−1) (1)=0     b−2z=0          z=(b/2)  Continue

$${Let}\:{a}=\mathrm{0}\:{then}\:{b}>\mathrm{0}: \\ $$ $${f}\left({z}−{a}\right)={f}\left({b}−{z}\right)\mathrm{sin}\:\frac{{z}\pi}{{b}−{a}}\Rightarrow{f}\left({z}\right)={f}\left({b}−{z}\right)\mathrm{sin}\:\frac{{z}\pi}{{b}}=\mathrm{0}\:{if}\:{f}\left({z}\right)=\mathrm{0} \\ $$ $$\Rightarrow{f}\left({b}−{z}\right)=\mathrm{0}\:\mid\left\{\:\mathrm{sin}\:\frac{{z}\pi}{{b}}=\mathrm{0}\Rightarrow\frac{{z}\pi}{{b}}={sin}^{−\mathrm{1}} \mathrm{0}\Rightarrow{z}=\mathrm{0}\right\} \\ $$ $${f}\left({z}\right)=\mathrm{0}\Rightarrow{z}=\mathrm{0}\:{is}\:{one}\:{solution}. \\ $$ $${For}\:{a}=\mathrm{0}\:{and}\:{b}>\mathrm{0} \\ $$ $$\:\:\:\:\:{f}\left({z}\right)={f}\left({b}−{z}\right)\mathrm{sin}\:\frac{{z}\pi}{{b}}.............\left({i}\right) \\ $$ $$\:\:\:\:\:{f}\left({b}−{z}\right)={f}\left({b}−\overline {{b}−{z}}\right){sin}\frac{\left({b}−{z}\right)\pi}{{b}}\:\:\:\:\: \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={f}\left({z}\right){sin}\frac{\left({b}−{z}\right)\pi}{{b}}.......\left({ii}\right) \\ $$ $${From}\:\left({i}\right)\:{and}\:\left({ii}\right) \\ $$ $$\:\:\:\:{f}\left({z}\right)=\left({f}\left({z}\right){sin}\frac{\left({b}−{z}\right)\pi}{{b}}\right)\mathrm{sin}\:\frac{{z}\pi}{{b}} \\ $$ $$\:\:\:\:\left({sin}\frac{\left({b}−{z}\right)\pi}{{b}}\right)\left(\mathrm{sin}\:\frac{{z}\pi}{{b}}\right)=\mathrm{1} \\ $$ $$\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\left\{{cos}\left(\frac{\left({b}−{z}\right)\pi}{{b}}−\frac{{z}\pi}{{b}}\right)−{cos}\left(\frac{\left({b}−{z}\right)\pi}{{b}}+\frac{{z}\pi}{{b}}\right)\right\}=\mathrm{1} \\ $$ $$\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\left\{{cos}\left(\frac{\left({b}−{z}−{z}\right)\pi}{{b}}\right)−{cos}\left(\frac{\left({b}−{z}+{z}\right)\pi}{{b}}\right)\right\}=\mathrm{1} \\ $$ $$\:\:\:\:{cos}\left(\frac{\left({b}−\mathrm{2}{z}\right)\pi}{{b}}\right)−{cos}\left(\left(\pi\right)=\mathrm{2}\right. \\ $$ $$\:\:\:\:{cos}\left(\frac{\left({b}−\mathrm{2}{z}\right)\pi}{{b}}\right)+\mathrm{1}=\mathrm{2} \\ $$ $$\:\:\:\:{cos}\left(\frac{\left({b}−\mathrm{2}{z}\right)\pi}{{b}}\right)=\mathrm{1} \\ $$ $$\:\:\:\frac{\left({b}−\mathrm{2}{z}\right)\pi}{{b}}={cos}^{−\mathrm{1}} \left(\mathrm{1}\right)=\mathrm{0} \\ $$ $$\:\:\:{b}−\mathrm{2}{z}=\mathrm{0} \\ $$ $$\:\:\:\:\:\:\:\:{z}=\frac{{b}}{\mathrm{2}} \\ $$ $$\mathcal{C}{ontinue} \\ $$ $$\:\:\:\:\: \\ $$

Commented byRasheed Soomro last updated on 20/Nov/15

The condition ℜ(z)≥((a+b)/2)  is only for f(z)=z^2   ?

$${The}\:{condition}\:\Re\left({z}\right)\geqslant\frac{{a}+{b}}{\mathrm{2}}\:\:{is}\:{only}\:{for}\:{f}\left({z}\right)={z}^{\mathrm{2}} \:\:? \\ $$

Commented byRasheed Soomro last updated on 21/Nov/15

When you write statement and condition on   one line it should mean that the condition is  only for that statement.For example the condition  ℜ(z)≥((a+b)/2) is only in case f(z)=z^2  :  f(z)=z^2 ,ℜ(z)≥((a+b)/2)  Similarly in the following you are asked for z when  f(z)=0.  :  f(z)=0,z=?  Am I Right?

$${When}\:{you}\:{write}\:{statement}\:{and}\:{condition}\:{on}\: \\ $$ $${one}\:{line}\:{it}\:{should}\:{mean}\:{that}\:{the}\:{condition}\:{is} \\ $$ $${only}\:{for}\:{that}\:{statement}.{For}\:{example}\:{the}\:{condition} \\ $$ $$\Re\left({z}\right)\geqslant\frac{{a}+{b}}{\mathrm{2}}\:{is}\:{only}\:{in}\:{case}\:{f}\left({z}\right)={z}^{\mathrm{2}} \:: \\ $$ $${f}\left({z}\right)={z}^{\mathrm{2}} ,\Re\left({z}\right)\geqslant\frac{{a}+{b}}{\mathrm{2}} \\ $$ $${Similarly}\:{in}\:{the}\:{following}\:{you}\:{are}\:{asked}\:{for}\:{z}\:{when} \\ $$ $${f}\left({z}\right)=\mathrm{0}.\:\:: \\ $$ $${f}\left({z}\right)=\mathrm{0},{z}=? \\ $$ $$\mathcal{A}{m}\:\mathcal{I}\:\mathcal{R}{ight}? \\ $$

Answered by Rasheed Soomro last updated on 21/Nov/15

f:C→C,(a,b)∈R^2 ,a<b  f(z−a)=f(b−z)sin ((zπ)/(b−a))  f(z)=z^2 ,ℜ(z)≥((a+b)/2)  f(z)=0,z=?  −−−−−−−−−−−−−−−−−−−−−  f(z−a)=f(b−z)sin ((zπ)/(b−a)) is true for any real a,b with a<b  Let a=0,then b>0  f(z−a)=f(b−z)sin ((zπ)/(b−a))          ⇒f(z)=f(b−z)sin ((zπ)/b)            ⇒ f(b−z)=f(b−b−z^(−) )sin ((zπ)/b)                                   =f(z)sin ((zπ)/b)  f(z)=f(z)sin ((zπ)/b)sin ((zπ)/b)  f(z)−f(z)sin^2  ((zπ)/b)=0  f(z)(1−sin^2  ((zπ)/b))=0  f(z)(1−sin((zπ)/b))(1+sin((zπ)/b))=0  f(z)=0   ∣     sin((πz)/b) =1  ∣   sin ((πz)/b)=−1                    ∣  ((πz)/b)=sin^(−1) (1)  ∣  ((πz)/b)=sin^(−1) (−1)                    ∣ ((πz)/b)=(π/2)  ∣  ((πz)/b)=((3π)/2)                    ∣ z=(b/2)     ∣ z=((3b)/2)        for a=0 ,b>0                    ∣  ℜ(z)≥ ((a+b)/2)=((0+b)/2)                    ∣  (b/2)≥(b/2)      Condition satisfied for z=(b/2)                    ∣ ((3b)/2)≥(b/2)        as well as    for z=((3b)/2)  −−−−−−−−−−−−−  Let b=0 [a<0]  f(z−a)=f(b−z)sin ((zπ)/(b−a))  ⇒f(z−a)=f(−z)sin ((zπ)/(−a))  ⇒f(z−a)=−f(−z)sin ((zπ)/a)  f(−z) =−((f(z−a))/(sin ((zπ)/a)))          f(z−a)=f(−a−z^(−) )=−((f(a−z−a))/(sin (((a−z)π)/a)))                                           =−((f(−z))/(sin (((a−z)π)/a)))  f(−z) =−((−((f(−z))/(sin (((a−z)π)/a))))/(sin ((zπ)/a)))  f(−z)=((f(−z))/(sin (((a−z)π)/a).sin ((zπ)/a)))  f(−z)−((f(−z))/(sin (((a−z)π)/a).sin ((zπ)/a)))=0  f(−z)[1−(1/(sin (((a−z)π)/a).sin ((zπ)/a)))]=0  f(−z)=0  ∣  (1/(sin (((a−z)π)/a).sin ((zπ)/a)))=1                       ∣  sin (((a−z)π)/a).sin ((zπ)/a)=1                       ∣ (1/2){cos((((a−z−z)π)/a))−cos((((a−z+z)π)/a)}=1                       ∣ (1/2){cos((((a−2z)π)/a))−cos((((a)π)/a)}=1                       ∣ (1/2){cos((((a−2z)π)/a))−cos(π)}=1                       ∣ cos((((a−2z)π)/a))+1=2                       ∣ cos((((a−2z)π)/a))=1                       ∣   (((a−2z)π)/a)=cos^(−1) (1)=0                       ∣  a−2z=0⇒z=(a/2)     [Satisfy the condition ℜ(z)≥((a+b)/2)] [b=0

$${f}:\mathbb{C}\rightarrow\mathbb{C},\left({a},{b}\right)\in\mathbb{R}^{\mathrm{2}} ,{a}<{b} \\ $$ $${f}\left({z}−{a}\right)={f}\left({b}−{z}\right)\mathrm{sin}\:\frac{{z}\pi}{{b}−{a}} \\ $$ $${f}\left({z}\right)={z}^{\mathrm{2}} ,\Re\left({z}\right)\geqslant\frac{{a}+{b}}{\mathrm{2}} \\ $$ $${f}\left({z}\right)=\mathrm{0},{z}=? \\ $$ $$−−−−−−−−−−−−−−−−−−−−− \\ $$ $${f}\left({z}−{a}\right)={f}\left({b}−{z}\right)\mathrm{sin}\:\frac{{z}\pi}{{b}−{a}}\:{is}\:{true}\:{for}\:{any}\:{real}\:{a},{b}\:{with}\:{a}<{b} \\ $$ $${Let}\:{a}=\mathrm{0},{then}\:{b}>\mathrm{0} \\ $$ $${f}\left({z}−{a}\right)={f}\left({b}−{z}\right)\mathrm{sin}\:\frac{{z}\pi}{{b}−{a}} \\ $$ $$\:\:\:\:\:\:\:\:\Rightarrow{f}\left({z}\right)={f}\left({b}−{z}\right)\mathrm{sin}\:\frac{{z}\pi}{{b}} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\Rightarrow\:{f}\left({b}−{z}\right)={f}\left({b}−\overline {{b}−{z}}\right)\mathrm{sin}\:\frac{{z}\pi}{{b}} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={f}\left({z}\right)\mathrm{sin}\:\frac{{z}\pi}{{b}} \\ $$ $${f}\left({z}\right)={f}\left({z}\right)\mathrm{sin}\:\frac{{z}\pi}{{b}}\mathrm{sin}\:\frac{{z}\pi}{{b}} \\ $$ $${f}\left({z}\right)−{f}\left({z}\right)\mathrm{sin}^{\mathrm{2}} \:\frac{{z}\pi}{{b}}=\mathrm{0} \\ $$ $${f}\left({z}\right)\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\frac{{z}\pi}{{b}}\right)=\mathrm{0} \\ $$ $${f}\left({z}\right)\left(\mathrm{1}−\mathrm{sin}\frac{{z}\pi}{{b}}\right)\left(\mathrm{1}+\mathrm{sin}\frac{{z}\pi}{{b}}\right)=\mathrm{0} \\ $$ $${f}\left({z}\right)=\mathrm{0}\:\:\:\mid\:\:\:\:\:\mathrm{sin}\frac{\pi{z}}{{b}}\:=\mathrm{1}\:\:\mid\:\:\:\mathrm{sin}\:\frac{\pi{z}}{{b}}=−\mathrm{1} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:\:\frac{\pi{z}}{{b}}=\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}\right)\:\:\mid\:\:\frac{\pi{z}}{{b}}=\mathrm{sin}^{−\mathrm{1}} \left(−\mathrm{1}\right) \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:\frac{\pi{z}}{{b}}=\frac{\pi}{\mathrm{2}}\:\:\mid\:\:\frac{\pi{z}}{{b}}=\frac{\mathrm{3}\pi}{\mathrm{2}} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:{z}=\frac{{b}}{\mathrm{2}}\:\:\:\:\:\mid\:{z}=\frac{\mathrm{3}{b}}{\mathrm{2}}\:\:\:\:\:\:\:\:{for}\:{a}=\mathrm{0}\:,{b}>\mathrm{0} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:\:\Re\left({z}\right)\geqslant\:\frac{{a}+{b}}{\mathrm{2}}=\frac{\mathrm{0}+{b}}{\mathrm{2}} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:\:\frac{{b}}{\mathrm{2}}\geqslant\frac{{b}}{\mathrm{2}}\:\:\:\:\:\:{Condition}\:{satisfied}\:{for}\:{z}=\frac{{b}}{\mathrm{2}} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:\frac{\mathrm{3}{b}}{\mathrm{2}}\geqslant\frac{{b}}{\mathrm{2}}\:\:\:\:\:\:\:\:{as}\:{well}\:{as}\:\:\:\:{for}\:{z}=\frac{\mathrm{3}{b}}{\mathrm{2}} \\ $$ $$−−−−−−−−−−−−− \\ $$ $${Let}\:{b}=\mathrm{0}\:\left[{a}<\mathrm{0}\right] \\ $$ $${f}\left({z}−{a}\right)={f}\left({b}−{z}\right)\mathrm{sin}\:\frac{{z}\pi}{{b}−{a}} \\ $$ $$\Rightarrow{f}\left({z}−{a}\right)={f}\left(−{z}\right)\mathrm{sin}\:\frac{{z}\pi}{−{a}} \\ $$ $$\Rightarrow{f}\left({z}−{a}\right)=−{f}\left(−{z}\right)\mathrm{sin}\:\frac{{z}\pi}{{a}} \\ $$ $${f}\left(−{z}\right)\:=−\frac{{f}\left({z}−{a}\right)}{\mathrm{sin}\:\frac{{z}\pi}{{a}}} \\ $$ $$\:\:\:\:\:\:\:\:{f}\left({z}−{a}\right)={f}\left(−\overline {{a}−{z}}\right)=−\frac{{f}\left({a}−{z}−{a}\right)}{\mathrm{sin}\:\frac{\left({a}−{z}\right)\pi}{{a}}} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−\frac{{f}\left(−{z}\right)}{\mathrm{sin}\:\frac{\left({a}−{z}\right)\pi}{{a}}} \\ $$ $${f}\left(−{z}\right)\:=−\frac{−\frac{{f}\left(−{z}\right)}{\mathrm{sin}\:\frac{\left({a}−{z}\right)\pi}{{a}}}}{\mathrm{sin}\:\frac{{z}\pi}{{a}}} \\ $$ $${f}\left(−{z}\right)=\frac{{f}\left(−{z}\right)}{\mathrm{sin}\:\frac{\left({a}−{z}\right)\pi}{{a}}.\mathrm{sin}\:\frac{{z}\pi}{{a}}} \\ $$ $${f}\left(−{z}\right)−\frac{{f}\left(−{z}\right)}{\mathrm{sin}\:\frac{\left({a}−{z}\right)\pi}{{a}}.\mathrm{sin}\:\frac{{z}\pi}{{a}}}=\mathrm{0} \\ $$ $${f}\left(−{z}\right)\left[\mathrm{1}−\frac{\mathrm{1}}{\mathrm{sin}\:\frac{\left({a}−{z}\right)\pi}{{a}}.\mathrm{sin}\:\frac{{z}\pi}{{a}}}\right]=\mathrm{0} \\ $$ $${f}\left(−{z}\right)=\mathrm{0}\:\:\mid\:\:\frac{\mathrm{1}}{\mathrm{sin}\:\frac{\left({a}−{z}\right)\pi}{{a}}.\mathrm{sin}\:\frac{{z}\pi}{{a}}}=\mathrm{1} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:\:\mathrm{sin}\:\frac{\left({a}−{z}\right)\pi}{{a}}.\mathrm{sin}\:\frac{{z}\pi}{{a}}=\mathrm{1} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:\frac{\mathrm{1}}{\mathrm{2}}\left\{{cos}\left(\frac{\left({a}−{z}−{z}\right)\pi}{{a}}\right)−{cos}\left(\frac{\left({a}−{z}+{z}\right)\pi}{{a}}\right\}=\mathrm{1}\right. \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:\frac{\mathrm{1}}{\mathrm{2}}\left\{{cos}\left(\frac{\left({a}−\mathrm{2}{z}\right)\pi}{{a}}\right)−{cos}\left(\frac{\left({a}\right)\pi}{{a}}\right\}=\mathrm{1}\right. \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:\frac{\mathrm{1}}{\mathrm{2}}\left\{{cos}\left(\frac{\left({a}−\mathrm{2}{z}\right)\pi}{{a}}\right)−{cos}\left(\pi\right)\right\}=\mathrm{1} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:{cos}\left(\frac{\left({a}−\mathrm{2}{z}\right)\pi}{{a}}\right)+\mathrm{1}=\mathrm{2} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:{cos}\left(\frac{\left({a}−\mathrm{2}{z}\right)\pi}{{a}}\right)=\mathrm{1} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:\:\:\frac{\left({a}−\mathrm{2}{z}\right)\pi}{{a}}={cos}^{−\mathrm{1}} \left(\mathrm{1}\right)=\mathrm{0} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:\:{a}−\mathrm{2}{z}=\mathrm{0}\Rightarrow{z}=\frac{{a}}{\mathrm{2}}\:\:\:\:\:\left[{Satisfy}\:{the}\:{condition}\:\Re\left({z}\right)\geqslant\frac{{a}+{b}}{\mathrm{2}}\right]\:\left[{b}=\mathrm{0}\right. \\ $$ $$ \\ $$

Commented byRasheed Soomro last updated on 21/Nov/15

This is not full answer.It is for a=0 or b=0 and also  z is pure real.  Needs verification  and  attestation.

$${This}\:{is}\:{not}\:{full}\:{answer}.{It}\:{is}\:{for}\:{a}=\mathrm{0}\:{or}\:{b}=\mathrm{0}\:{and}\:{also} \\ $$ $${z}\:{is}\:{pure}\:{real}. \\ $$ $${Needs}\:{verification}\:\:{and}\:\:{attestation}. \\ $$

Answered by Rasheed Soomro last updated on 22/Nov/15

f:C→C,(a,b)∈R^2 ,a<b  f(z−a)=f(b−z)sin ((zπ)/(b−a))  f(z)=z^2 ,ℜ(z)≥((a+b)/2)  f(z)=0,z=?  −−−−−−−−−−−−−−−−−−−−−  Let z=x+iy  f(z−a)=f(b−z)sin ((zπ)/(b−a))⇒f((x+iy)−a)=f(b−(x+iy))sin (((x+iy)π)/(b−a))  Let  b−a=1 then b=a+1    f((x+iy)−a)=f( a+1−(x+iy) )sin (x+iy)  Continue

$${f}:\mathbb{C}\rightarrow\mathbb{C},\left({a},{b}\right)\in\mathbb{R}^{\mathrm{2}} ,{a}<{b} \\ $$ $${f}\left({z}−{a}\right)={f}\left({b}−{z}\right)\mathrm{sin}\:\frac{{z}\pi}{{b}−{a}} \\ $$ $${f}\left({z}\right)={z}^{\mathrm{2}} ,\Re\left({z}\right)\geqslant\frac{{a}+{b}}{\mathrm{2}} \\ $$ $${f}\left({z}\right)=\mathrm{0},{z}=? \\ $$ $$−−−−−−−−−−−−−−−−−−−−− \\ $$ $${Let}\:{z}={x}+{iy} \\ $$ $${f}\left({z}−{a}\right)={f}\left({b}−{z}\right)\mathrm{sin}\:\frac{{z}\pi}{{b}−{a}}\Rightarrow{f}\left(\left({x}+{iy}\right)−{a}\right)={f}\left({b}−\left({x}+{iy}\right)\right)\mathrm{sin}\:\frac{\left({x}+{iy}\right)\pi}{{b}−{a}} \\ $$ $${Let}\:\:{b}−{a}=\mathrm{1}\:{then}\:{b}={a}+\mathrm{1} \\ $$ $$\:\:{f}\left(\left({x}+{iy}\right)−{a}\right)={f}\left(\:{a}+\mathrm{1}−\left({x}+{iy}\right)\:\right)\mathrm{sin}\:\left({x}+{iy}\right) \\ $$ $${Continue} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com