Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 2575 by prakash jain last updated on 22/Nov/15

a_1 =0  a_n =27×a_(n−1) +(n−1)  Σ_(k=1) ^m a_k =?

$${a}_{\mathrm{1}} =\mathrm{0} \\ $$$${a}_{{n}} =\mathrm{27}×{a}_{{n}−\mathrm{1}} +\left({n}−\mathrm{1}\right) \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}{a}_{{k}} =? \\ $$

Commented by prakash jain last updated on 22/Nov/15

a_1 =0  a_2 =1  a_3 =27+2  a_4 =27^2 +2.27+3  a_5 =27^3 +2.27^2 +3∙27+4

$${a}_{\mathrm{1}} =\mathrm{0} \\ $$$${a}_{\mathrm{2}} =\mathrm{1} \\ $$$${a}_{\mathrm{3}} =\mathrm{27}+\mathrm{2} \\ $$$${a}_{\mathrm{4}} =\mathrm{27}^{\mathrm{2}} +\mathrm{2}.\mathrm{27}+\mathrm{3} \\ $$$${a}_{\mathrm{5}} =\mathrm{27}^{\mathrm{3}} +\mathrm{2}.\mathrm{27}^{\mathrm{2}} +\mathrm{3}\centerdot\mathrm{27}+\mathrm{4} \\ $$

Commented by Yozzi last updated on 22/Nov/15

Generating function is a possible  approach to finding a_n  I think.

$${Generating}\:{function}\:{is}\:{a}\:{possible} \\ $$$${approach}\:{to}\:{finding}\:{a}_{{n}} \:{I}\:{think}. \\ $$

Commented by prakash jain last updated on 22/Nov/15

This sum is based on Q2545. a_n  being  the quotient when 3^(3n) −26n−1 is divided  by 676.  a_n  should evaluate to ((3^(3n) −26n−1)/(676))

$$\mathrm{This}\:\mathrm{sum}\:\mathrm{is}\:\mathrm{based}\:\mathrm{on}\:\mathrm{Q2545}.\:{a}_{{n}} \:\mathrm{being} \\ $$$$\mathrm{the}\:\mathrm{quotient}\:\mathrm{when}\:\mathrm{3}^{\mathrm{3}{n}} −\mathrm{26}{n}−\mathrm{1}\:\mathrm{is}\:\mathrm{divided} \\ $$$$\mathrm{by}\:\mathrm{676}. \\ $$$${a}_{{n}} \:\mathrm{should}\:\mathrm{evaluate}\:\mathrm{to}\:\frac{\mathrm{3}^{\mathrm{3}{n}} −\mathrm{26}{n}−\mathrm{1}}{\mathrm{676}} \\ $$

Commented by Rasheed Soomro last updated on 23/Nov/15

What a deep observer  you  are !!!

$$\mathcal{W}{hat}\:{a}\:{deep}\:{observer}\:\:{you}\:\:{are}\:!!! \\ $$

Answered by RasheedAhmad last updated on 23/Nov/15

Let S=Σ_(k=1) ^m a_k   S=s_1 +s_2 +s_3 +...+s_m   1+2+ ...+n=((n(n+1))/2) [Formula for s_i ]  where  s_1 =1+2+...(m−1) terms=((m(m−1))/2)  s_2 =27(1+2+....(m−2) terms=(((m−2)(m−1))/2)  s_3 =27^2 (1+2+...(m−3)terms                                 = (((m−3)(m−2))/2)  ....  s_m =27^(m−1) (1+2+...0 terms=0  ...  Continue

$${Let}\:\mathrm{S}=\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}{a}_{{k}} \\ $$$$\mathrm{S}=\mathrm{s}_{\mathrm{1}} +\mathrm{s}_{\mathrm{2}} +\mathrm{s}_{\mathrm{3}} +...+\mathrm{s}_{\mathrm{m}} \\ $$$$\mathrm{1}+\mathrm{2}+\:...+{n}=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\:\left[{Formula}\:{for}\:\mathrm{s}_{\mathrm{i}} \right] \\ $$$$\mathrm{where} \\ $$$$\mathrm{s}_{\mathrm{1}} =\mathrm{1}+\mathrm{2}+...\left({m}−\mathrm{1}\right)\:\mathrm{terms}=\frac{\mathrm{m}\left(\mathrm{m}−\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\mathrm{s}_{\mathrm{2}} =\mathrm{27}\left(\mathrm{1}+\mathrm{2}+....\left({m}−\mathrm{2}\right)\:\mathrm{terms}=\frac{\left(\mathrm{m}−\mathrm{2}\right)\left(\mathrm{m}−\mathrm{1}\right)}{\mathrm{2}}\right. \\ $$$$\mathrm{s}_{\mathrm{3}} =\mathrm{27}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{2}+...\left({m}−\mathrm{3}\right){terms}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\left(\mathrm{m}−\mathrm{3}\right)\left(\mathrm{m}−\mathrm{2}\right)}{\mathrm{2}} \\ $$$$.... \\ $$$$\mathrm{s}_{\mathrm{m}} =\mathrm{27}^{\mathrm{m}−\mathrm{1}} \left(\mathrm{1}+\mathrm{2}+...\mathrm{0}\:{terms}=\mathrm{0}\right. \\ $$$$... \\ $$$$\mathrm{Continue} \\ $$

Commented by Filup last updated on 23/Nov/15

I believe if I have evaluated correctly:  S=Σ_(k=1) ^n (27^(k−1) (Σ_(h=1) ^(m−k) h))  S=Σ_(k=1) ^n Σ_(h=1) ^(m−k) 27^(k−1) h  S=Σ_(k=1) ^n (27^(k−1) ((1/2)(m−k)(1+m−k)))    s_1 =1+2+...+(m−1)  s_2 =27(1+2+...+(m−2))  s_3 =27^2 (1+2+...+(m−3))  ⋮  s_n =27^(n−1) (1+2+...+(m−n))  ∴Σ_(i=1) ^n s_i =(1/2)Σ_(k=1) ^n (27^(k−1) (m−k)(m−k+1))  continue

$$\mathrm{I}\:\mathrm{believe}\:\mathrm{if}\:\mathrm{I}\:\mathrm{have}\:\mathrm{evaluated}\:\mathrm{correctly}: \\ $$$${S}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{27}^{{k}−\mathrm{1}} \left(\underset{{h}=\mathrm{1}} {\overset{{m}−{k}} {\sum}}{h}\right)\right) \\ $$$${S}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\underset{{h}=\mathrm{1}} {\overset{{m}−{k}} {\sum}}\mathrm{27}^{{k}−\mathrm{1}} {h} \\ $$$${S}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{27}^{{k}−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\left({m}−{k}\right)\left(\mathrm{1}+{m}−{k}\right)\right)\right) \\ $$$$ \\ $$$${s}_{\mathrm{1}} =\mathrm{1}+\mathrm{2}+...+\left({m}−\mathrm{1}\right) \\ $$$${s}_{\mathrm{2}} =\mathrm{27}\left(\mathrm{1}+\mathrm{2}+...+\left({m}−\mathrm{2}\right)\right) \\ $$$${s}_{\mathrm{3}} =\mathrm{27}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{2}+...+\left({m}−\mathrm{3}\right)\right) \\ $$$$\vdots \\ $$$${s}_{{n}} =\mathrm{27}^{{n}−\mathrm{1}} \left(\mathrm{1}+\mathrm{2}+...+\left({m}−{n}\right)\right) \\ $$$$\therefore\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{s}_{{i}} =\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{27}^{{k}−\mathrm{1}} \left({m}−{k}\right)\left({m}−{k}+\mathrm{1}\right)\right) \\ $$$${continue} \\ $$

Answered by prakash jain last updated on 23/Nov/15

a_n =27^(n−2) +2∙27^(n−3) +...+(n−2)∙27+(n−1)  t_n =27^(n−2) +2∙27^(n−3) +3∙27^(n−2) +...+(n−2)∙27  (t_n /(27))=            27^(n−3)        +2∙27^(n−2) +...+(n−3)∙27+(n−2)  t_n −(t_n /(27))=27^(n−2) +27^(n−3) +....+27−(n−2)  RHS black color is GP  ((26t_n )/(27))=((27(27^(n−2) −1))/(26))−n+2  ((26)/(27))t_n =((27^(n−1) −27−26n+2∙26)/(26))  t_n =((27^n −27∙27−26∙27n+2∙26∙27)/(26∙26))  a_n =((27^n −27∙27−26∙27n+2∙26∙27)/(26∙26))+n−1  a_n =((3^(3n) −26∙27n+26∙26n−27+2∙26∙27−26∙26)/(676))  a_n =((3^(3n) −26n−27.27+26∙27+26.27−26∙26)/(676))  a_n =((3^(3n) −26n−27(27−26)+26(27−26))/(676))  a_n =((3^(3n) −26n−1)/(676))  Σ_(i=1) ^m a_i =(1/(676))[Σ_(i=1) ^m 3^(3i) −26Σ_(i=1) ^m i−Σ_(i=1) ^m 1]  The last sum is direct formula.

$${a}_{{n}} =\mathrm{27}^{{n}−\mathrm{2}} +\mathrm{2}\centerdot\mathrm{27}^{{n}−\mathrm{3}} +...+\left({n}−\mathrm{2}\right)\centerdot\mathrm{27}+\left({n}−\mathrm{1}\right) \\ $$$${t}_{{n}} =\mathrm{27}^{{n}−\mathrm{2}} +\mathrm{2}\centerdot\mathrm{27}^{{n}−\mathrm{3}} +\mathrm{3}\centerdot\mathrm{27}^{{n}−\mathrm{2}} +...+\left({n}−\mathrm{2}\right)\centerdot\mathrm{27} \\ $$$$\frac{{t}_{{n}} }{\mathrm{27}}=\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{27}^{{n}−\mathrm{3}} \:\:\:\:\:\:\:+\mathrm{2}\centerdot\mathrm{27}^{{n}−\mathrm{2}} +...+\left({n}−\mathrm{3}\right)\centerdot\mathrm{27}+\left({n}−\mathrm{2}\right) \\ $$$${t}_{{n}} −\frac{{t}_{{n}} }{\mathrm{27}}=\mathrm{27}^{{n}−\mathrm{2}} +\mathrm{27}^{{n}−\mathrm{3}} +....+\mathrm{27}−\left({n}−\mathrm{2}\right) \\ $$$$\mathrm{RHS}\:\mathrm{black}\:\mathrm{color}\:\mathrm{is}\:\mathrm{GP} \\ $$$$\frac{\mathrm{26}{t}_{{n}} }{\mathrm{27}}=\frac{\mathrm{27}\left(\mathrm{27}^{{n}−\mathrm{2}} −\mathrm{1}\right)}{\mathrm{26}}−{n}+\mathrm{2} \\ $$$$\frac{\mathrm{26}}{\mathrm{27}}{t}_{{n}} =\frac{\mathrm{27}^{{n}−\mathrm{1}} −\mathrm{27}−\mathrm{26}{n}+\mathrm{2}\centerdot\mathrm{26}}{\mathrm{26}} \\ $$$${t}_{{n}} =\frac{\mathrm{27}^{{n}} −\mathrm{27}\centerdot\mathrm{27}−\mathrm{26}\centerdot\mathrm{27}{n}+\mathrm{2}\centerdot\mathrm{26}\centerdot\mathrm{27}}{\mathrm{26}\centerdot\mathrm{26}} \\ $$$${a}_{{n}} =\frac{\mathrm{27}^{{n}} −\mathrm{27}\centerdot\mathrm{27}−\mathrm{26}\centerdot\mathrm{27}{n}+\mathrm{2}\centerdot\mathrm{26}\centerdot\mathrm{27}}{\mathrm{26}\centerdot\mathrm{26}}+{n}−\mathrm{1} \\ $$$${a}_{{n}} =\frac{\mathrm{3}^{\mathrm{3}{n}} −\mathrm{26}\centerdot\mathrm{27}{n}+\mathrm{26}\centerdot\mathrm{26}{n}−\mathrm{27}+\mathrm{2}\centerdot\mathrm{26}\centerdot\mathrm{27}−\mathrm{26}\centerdot\mathrm{26}}{\mathrm{676}} \\ $$$${a}_{{n}} =\frac{\mathrm{3}^{\mathrm{3}{n}} −\mathrm{26}{n}−\mathrm{27}.\mathrm{27}+\mathrm{26}\centerdot\mathrm{27}+\mathrm{26}.\mathrm{27}−\mathrm{26}\centerdot\mathrm{26}}{\mathrm{676}} \\ $$$${a}_{{n}} =\frac{\mathrm{3}^{\mathrm{3}{n}} −\mathrm{26}{n}−\mathrm{27}\left(\mathrm{27}−\mathrm{26}\right)+\mathrm{26}\left(\mathrm{27}−\mathrm{26}\right)}{\mathrm{676}} \\ $$$${a}_{{n}} =\frac{\mathrm{3}^{\mathrm{3}{n}} −\mathrm{26}{n}−\mathrm{1}}{\mathrm{676}} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{m}} {\sum}}{a}_{{i}} =\frac{\mathrm{1}}{\mathrm{676}}\left[\underset{{i}=\mathrm{1}} {\overset{{m}} {\sum}}\mathrm{3}^{\mathrm{3}{i}} −\mathrm{26}\underset{{i}=\mathrm{1}} {\overset{{m}} {\sum}}{i}−\underset{{i}=\mathrm{1}} {\overset{{m}} {\sum}}\mathrm{1}\right] \\ $$$$\mathrm{The}\:\mathrm{last}\:\mathrm{sum}\:\mathrm{is}\:\mathrm{direct}\:\mathrm{formula}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com