Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 2602 by Yozzis last updated on 23/Nov/15

Solve the following d.e for v in terms of s                     c−kv=v(dv/ds).

$${Solve}\:{the}\:{following}\:{d}.{e}\:{for}\:{v}\:{in}\:{terms}\:{of}\:{s} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{c}−{kv}={v}\frac{{dv}}{{ds}}. \\ $$$$ \\ $$

Answered by prakash jain last updated on 24/Nov/15

((vdv)/(c−kv))=ds  −(1/k)[∫ ((c−kv)/(c−kv))dv−∫(c/(c−kv))dv]=ds  −(1/k)(v+(c/k)ln (c−kv))+C=s  −(v/k)−(c/k^2 )ln (c−kv)+C=s  kv+cln (c−kv)−Ck^2 =−sk^2   ln (c−kv)=(1/c)(−kv+Ck^2 −sk^2 )  This is an implicit relation between v and s.

$$\frac{{vdv}}{{c}−{kv}}={ds} \\ $$$$−\frac{\mathrm{1}}{{k}}\left[\int\:\frac{{c}−{kv}}{{c}−{kv}}{dv}−\int\frac{{c}}{{c}−{kv}}{dv}\right]={ds} \\ $$$$−\frac{\mathrm{1}}{{k}}\left({v}+\frac{{c}}{{k}}\mathrm{ln}\:\left({c}−{kv}\right)\right)+{C}={s} \\ $$$$−\frac{{v}}{{k}}−\frac{{c}}{{k}^{\mathrm{2}} }\mathrm{ln}\:\left({c}−{kv}\right)+{C}={s} \\ $$$${kv}+{c}\mathrm{ln}\:\left({c}−{kv}\right)−{Ck}^{\mathrm{2}} =−{sk}^{\mathrm{2}} \\ $$$$\mathrm{ln}\:\left({c}−{kv}\right)=\frac{\mathrm{1}}{{c}}\left(−{kv}+{Ck}^{\mathrm{2}} −{sk}^{\mathrm{2}} \right) \\ $$$$\mathrm{This}\:\mathrm{is}\:\mathrm{an}\:\mathrm{implicit}\:\mathrm{relation}\:\mathrm{between}\:{v}\:\mathrm{and}\:{s}. \\ $$

Commented by Yozzi last updated on 23/Nov/15

I got up to your result but I′m   wondering how you′ll obtain explicitly  v in terms of s. Wolfram Alpha  gave an answer in terms of something  called Lambert′s W function. I  don′t know that function yet.

$${I}\:{got}\:{up}\:{to}\:{your}\:{result}\:{but}\:{I}'{m}\: \\ $$$${wondering}\:{how}\:{you}'{ll}\:{obtain}\:{explicitly} \\ $$$${v}\:{in}\:{terms}\:{of}\:{s}.\:{Wolfram}\:{Alpha} \\ $$$${gave}\:{an}\:{answer}\:{in}\:{terms}\:{of}\:{something} \\ $$$${called}\:{Lambert}'{s}\:{W}\:{function}.\:{I} \\ $$$${don}'{t}\:{know}\:{that}\:{function}\:{yet}.\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by prakash jain last updated on 23/Nov/15

ln (c−ky)=(1/c)(−kv+Ck^2 −sk^2 )  c−ky=e^((1/c)(−kv+Ck^2 −sk^2 ))   ky=c−(1/c)e^((1/c)(−kv+Ck^2 −sk^2 ))

$$\mathrm{ln}\:\left({c}−{ky}\right)=\frac{\mathrm{1}}{{c}}\left(−{kv}+{Ck}^{\mathrm{2}} −{sk}^{\mathrm{2}} \right) \\ $$$${c}−{ky}={e}^{\frac{\mathrm{1}}{{c}}\left(−{kv}+{Ck}^{\mathrm{2}} −{sk}^{\mathrm{2}} \right)} \\ $$$${ky}={c}−\frac{\mathrm{1}}{{c}}{e}^{\frac{\mathrm{1}}{{c}}\left(−{kv}+{Ck}^{\mathrm{2}} −{sk}^{\mathrm{2}} \right)} \\ $$

Commented by Filup last updated on 24/Nov/15

i want to learn that function

$${i}\:{want}\:{to}\:{learn}\:{that}\:{function} \\ $$

Commented by 123456 last updated on 24/Nov/15

W lambert is a function such that  ye^y =x (or something similiar, i dont remember it exact)

$$\mathrm{W}\:\mathrm{lambert}\:\mathrm{is}\:\mathrm{a}\:\mathrm{function}\:\mathrm{such}\:\mathrm{that} \\ $$$${ye}^{{y}} ={x}\:\left(\mathrm{or}\:\mathrm{something}\:\mathrm{similiar},\:\mathrm{i}\:\mathrm{dont}\:\mathrm{remember}\:\mathrm{it}\:\mathrm{exact}\right) \\ $$

Commented by prakash jain last updated on 24/Nov/15

y=W(ye^y )  ye^y =W(ye^y )e^(W(ye^y ))   ln (c−kv)=−((kv)/c)+((Ck^2 )/c)−((sk^2 )/c)  c−kv=e^(−((kv)/c)) e^((Ck^2 −sk^2 )/c)   c−kv=e^1 e^(−1) e^(−((kv)/c))  e^((Ck^2 −sk^2 )/c)   (c−kv)=e^(1−((kv)/c))  . e^(((Ck^2 −sk^2 )/c) −1)   (c−kv)=e^((c−kv)/c)  . e^(((Ck^2 −sk^2 )/c) −1)   (c−kv)∙e^(− ((c−kv)/c))  = e^(((Ck^2 −sk^2 )/c) −1)   c[−((c−kv)/c)]∙e^(−((c−kv)/c)) =−e^(((Ck^2 −sk^2 )/c) −1)   [−((c−kv)/c)]∙e^(−((c−kv)/c)) =((−e^(((Ck^2 −sk^2 )/c) −1) )/c)  taking W function on both sides  since W(xe^x )=x  −((c−kv)/c)=W(((−e^(((Ck^2 −sk^2 )/c) −1) )/c))  −c+kv=cW(−(e^(((Ck^2 −sk^2 )/c) −1) /c))  v=(c/k)W(−(e^(((Ck^2 −sk^2 )/c) −1) /c))+(c/k)

$${y}={W}\left({ye}^{{y}} \right) \\ $$$${ye}^{{y}} ={W}\left({ye}^{{y}} \right){e}^{{W}\left({ye}^{{y}} \right)} \\ $$$$\mathrm{ln}\:\left({c}−{kv}\right)=−\frac{{kv}}{{c}}+\frac{{Ck}^{\mathrm{2}} }{{c}}−\frac{{sk}^{\mathrm{2}} }{{c}} \\ $$$${c}−{kv}={e}^{−\frac{{kv}}{{c}}} {e}^{\frac{{Ck}^{\mathrm{2}} −{sk}^{\mathrm{2}} }{{c}}} \\ $$$${c}−{kv}={e}^{\mathrm{1}} {e}^{−\mathrm{1}} {e}^{−\frac{{kv}}{{c}}} \:{e}^{\frac{{Ck}^{\mathrm{2}} −{sk}^{\mathrm{2}} }{{c}}} \\ $$$$\left({c}−{kv}\right)={e}^{\mathrm{1}−\frac{{kv}}{{c}}} \:.\:{e}^{\frac{{Ck}^{\mathrm{2}} −{sk}^{\mathrm{2}} }{{c}}\:−\mathrm{1}} \\ $$$$\left({c}−{kv}\right)={e}^{\frac{{c}−{kv}}{{c}}} \:.\:{e}^{\frac{{Ck}^{\mathrm{2}} −{sk}^{\mathrm{2}} }{{c}}\:−\mathrm{1}} \\ $$$$\left({c}−{kv}\right)\centerdot{e}^{−\:\frac{{c}−{kv}}{{c}}} \:=\:{e}^{\frac{{Ck}^{\mathrm{2}} −{sk}^{\mathrm{2}} }{{c}}\:−\mathrm{1}} \\ $$$${c}\left[−\frac{{c}−{kv}}{{c}}\right]\centerdot{e}^{−\frac{{c}−{kv}}{{c}}} =−{e}^{\frac{{Ck}^{\mathrm{2}} −{sk}^{\mathrm{2}} }{{c}}\:−\mathrm{1}} \\ $$$$\left[−\frac{{c}−{kv}}{{c}}\right]\centerdot{e}^{−\frac{{c}−{kv}}{{c}}} =\frac{−{e}^{\frac{{Ck}^{\mathrm{2}} −{sk}^{\mathrm{2}} }{{c}}\:−\mathrm{1}} }{{c}} \\ $$$${taking}\:{W}\:{function}\:{on}\:{both}\:{sides} \\ $$$${since}\:{W}\left({xe}^{{x}} \right)={x} \\ $$$$−\frac{{c}−{kv}}{{c}}={W}\left(\frac{−{e}^{\frac{{Ck}^{\mathrm{2}} −{sk}^{\mathrm{2}} }{{c}}\:−\mathrm{1}} }{{c}}\right) \\ $$$$−{c}+{kv}={cW}\left(−\frac{{e}^{\frac{{Ck}^{\mathrm{2}} −{sk}^{\mathrm{2}} }{{c}}\:−\mathrm{1}} }{{c}}\right) \\ $$$${v}=\frac{{c}}{{k}}{W}\left(−\frac{{e}^{\frac{{Ck}^{\mathrm{2}} −{sk}^{\mathrm{2}} }{{c}}\:−\mathrm{1}} }{{c}}\right)+\frac{{c}}{{k}} \\ $$$$ \\ $$

Commented by prakash jain last updated on 24/Nov/15

If f=xe^x   W(x)=f^(−1) (x)  [f^(−1) is f−inverse]

$$\mathrm{If}\:{f}={xe}^{{x}} \\ $$$${W}\left({x}\right)={f}^{−\mathrm{1}} \left({x}\right)\:\:\left[{f}^{−\mathrm{1}} \mathrm{is}\:{f}−\mathrm{inverse}\right] \\ $$

Commented by Yozzi last updated on 24/Nov/15

I see. Interesting!

$${I}\:{see}.\:{Interesting}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com