Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 26111 by abdo imad last updated on 19/Dec/17

find  the radius of convergence for the serie   Σ_(n=1) ^∝  H_n  x^n   H_n   =   Σ_(k=1) ^(k=n)   (1/k) .

$${find}\:\:{the}\:{radius}\:{of}\:{convergence}\:{for}\:{the}\:{serie}\:\:\:\sum_{{n}=\mathrm{1}} ^{\propto} \:{H}_{{n}} \:{x}^{{n}} \\ $$$${H}_{{n}} \:\:=\:\:\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\:\frac{\mathrm{1}}{{k}}\:. \\ $$

Commented by prakash jain last updated on 21/Dec/17

∣x∣<1

$$\mid{x}\mid<\mathrm{1} \\ $$

Commented by abdo imad last updated on 22/Dec/17

we put  a_n^  =H_n    >0  lim_(n−>∝) (a_(n+1) /a_n ) =lim_(n−>∝) (H_(n+1) /H_n )  =lim_(n−>∝^ )  ((H_n  + (1/(n+1)))/H_n )==lim_(n−>∝) (1+ (1/((n+1)H_n )))=1  because H_n   ∼_(n−>∝)  ln(n)−>∝  we have  (1/R)=lim _(n−>∝) (a_(n+1) /a_n )=1  ⇒   R=1

$${we}\:{put}\:\:{a}_{{n}^{} } ={H}_{{n}} \:\:\:>\mathrm{0}\:\:{lim}_{{n}−>\propto} \frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }\:={lim}_{{n}−>\propto} \frac{{H}_{{n}+\mathrm{1}} }{{H}_{{n}} } \\ $$$$={lim}_{{n}−>\propto^{} } \:\frac{{H}_{{n}} \:+\:\frac{\mathrm{1}}{{n}+\mathrm{1}}}{{H}_{{n}} }=={lim}_{{n}−>\propto} \left(\mathrm{1}+\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right){H}_{{n}} }\right)=\mathrm{1} \\ $$$${because}\:{H}_{{n}} \:\:\sim_{{n}−>\propto} \:{ln}\left({n}\right)−>\propto \\ $$$${we}\:{have}\:\:\frac{\mathrm{1}}{{R}}={lim}\:_{{n}−>\propto} \frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }=\mathrm{1}\:\:\Rightarrow\:\:\:{R}=\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com