Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 26235 by ajfour last updated on 22/Dec/17

Find the real root of   x^2 +(1/x)=c .

$${Find}\:{the}\:{real}\:{root}\:{of} \\ $$$$\:{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}}={c}\:. \\ $$

Answered by mrW1 last updated on 22/Dec/17

x≠0  x^3 −cx+1=0  Δ=((1/2))^2 +(−(c/3))^3 =(1/4)−(c^3 /(27))  Δ=0⇒c=(3/(^3 (√4)))  case 1: if c=(3/(^3 (√4))), two real solutions.  x_1 =2 ^3 (√(−(1/2)))=−(2/(^3 (√2)))≈−1.587  x_2 =− ^3 (√(−(1/2)))=(1/(^3 (√2)))≈0.794    case 2: if c<(3/(^3 (√4))), one real solution.  x=^3 (√(−(1/2)+(√Δ)))−^3 (√((1/2)+(√Δ)))  e.g. c=1 ⇒ Δ=(1/4)−(1/(27))=((23)/(108))  x=^3 (√(−(1/2)+(√((23)/(108)))))−^3 (√((1/2)+(√((23)/(108)))))≈−1.324    case 3: if c>(3/(^3 (√4))), three real solutions.  e.g. c=3,  r=(√(c^3 /(27)))=1  cos ∅=−(1/(2r))=−(1/2)  ⇒∅=((2π)/3)  x_1 =2 ^3 (√r) cos (∅/3)=2 cos ((2π)/9)≈1.532  x_2 =2 ^3 (√r) cos ((∅+2π)/3)=2 cos ((8π)/9)≈−1.879  x_3 =2 ^3 (√r) cos ((∅+4π)/3)=2 cos ((14π)/9)≈0.347

$${x}\neq\mathrm{0} \\ $$$${x}^{\mathrm{3}} −{cx}+\mathrm{1}=\mathrm{0} \\ $$$$\Delta=\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(−\frac{{c}}{\mathrm{3}}\right)^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{4}}−\frac{{c}^{\mathrm{3}} }{\mathrm{27}} \\ $$$$\Delta=\mathrm{0}\Rightarrow{c}=\frac{\mathrm{3}}{\:^{\mathrm{3}} \sqrt{\mathrm{4}}} \\ $$$${case}\:\mathrm{1}:\:{if}\:{c}=\frac{\mathrm{3}}{\:^{\mathrm{3}} \sqrt{\mathrm{4}}},\:{two}\:{real}\:{solutions}. \\ $$$${x}_{\mathrm{1}} =\mathrm{2}\:\:^{\mathrm{3}} \sqrt{−\frac{\mathrm{1}}{\mathrm{2}}}=−\frac{\mathrm{2}}{\:^{\mathrm{3}} \sqrt{\mathrm{2}}}\approx−\mathrm{1}.\mathrm{587} \\ $$$${x}_{\mathrm{2}} =−\:\:^{\mathrm{3}} \sqrt{−\frac{\mathrm{1}}{\mathrm{2}}}=\frac{\mathrm{1}}{\:^{\mathrm{3}} \sqrt{\mathrm{2}}}\approx\mathrm{0}.\mathrm{794} \\ $$$$ \\ $$$${case}\:\mathrm{2}:\:{if}\:{c}<\frac{\mathrm{3}}{\:^{\mathrm{3}} \sqrt{\mathrm{4}}},\:{one}\:{real}\:{solution}. \\ $$$${x}=\:^{\mathrm{3}} \sqrt{−\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{\Delta}}−\:^{\mathrm{3}} \sqrt{\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{\Delta}} \\ $$$${e}.{g}.\:{c}=\mathrm{1}\:\Rightarrow\:\Delta=\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{27}}=\frac{\mathrm{23}}{\mathrm{108}} \\ $$$${x}=\:^{\mathrm{3}} \sqrt{−\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{\frac{\mathrm{23}}{\mathrm{108}}}}−\:^{\mathrm{3}} \sqrt{\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{\frac{\mathrm{23}}{\mathrm{108}}}}\approx−\mathrm{1}.\mathrm{324} \\ $$$$ \\ $$$${case}\:\mathrm{3}:\:{if}\:{c}>\frac{\mathrm{3}}{\:^{\mathrm{3}} \sqrt{\mathrm{4}}},\:{three}\:{real}\:{solutions}. \\ $$$${e}.{g}.\:{c}=\mathrm{3}, \\ $$$${r}=\sqrt{\frac{{c}^{\mathrm{3}} }{\mathrm{27}}}=\mathrm{1} \\ $$$$\mathrm{cos}\:\emptyset=−\frac{\mathrm{1}}{\mathrm{2}{r}}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\emptyset=\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$${x}_{\mathrm{1}} =\mathrm{2}\:\:^{\mathrm{3}} \sqrt{{r}}\:\mathrm{cos}\:\frac{\emptyset}{\mathrm{3}}=\mathrm{2}\:\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{9}}\approx\mathrm{1}.\mathrm{532} \\ $$$${x}_{\mathrm{2}} =\mathrm{2}\:\:^{\mathrm{3}} \sqrt{{r}}\:\mathrm{cos}\:\frac{\emptyset+\mathrm{2}\pi}{\mathrm{3}}=\mathrm{2}\:\mathrm{cos}\:\frac{\mathrm{8}\pi}{\mathrm{9}}\approx−\mathrm{1}.\mathrm{879} \\ $$$${x}_{\mathrm{3}} =\mathrm{2}\:\:^{\mathrm{3}} \sqrt{{r}}\:\mathrm{cos}\:\frac{\emptyset+\mathrm{4}\pi}{\mathrm{3}}=\mathrm{2}\:\mathrm{cos}\:\frac{\mathrm{14}\pi}{\mathrm{9}}\approx\mathrm{0}.\mathrm{347} \\ $$

Commented by ajfour last updated on 23/Dec/17

please sir, i dont follow this.  Help me derive formula for this.  how do you obtain Δ as a function  of c ? please see Q.26251  some consrruction method   should be there. Moreover all  cubic equations can be reduced  to this cubic equation, i think..

$${please}\:{sir},\:{i}\:{dont}\:{follow}\:{this}. \\ $$$${Help}\:{me}\:{derive}\:{formula}\:{for}\:{this}. \\ $$$${how}\:{do}\:{you}\:{obtain}\:\Delta\:{as}\:{a}\:{function} \\ $$$${of}\:{c}\:?\:{please}\:{see}\:{Q}.\mathrm{26251} \\ $$$${some}\:{consrruction}\:{method}\: \\ $$$${should}\:{be}\:{there}.\:{Moreover}\:{all} \\ $$$${cubic}\:{equations}\:{can}\:{be}\:{reduced} \\ $$$${to}\:{this}\:{cubic}\:{equation},\:{i}\:{think}.. \\ $$

Commented by mrW1 last updated on 23/Dec/17

Yes, every cubic equation can be  reduced to the form  x^3 +px+q=0    ...(i)  let v=(p/(3u)), u^3 −v^3 =−q  and x=u−v  (i) will become  u^3 +q−((p/(3u)))^3 =0  or  (u^3 )^2 +q(u^3 )−((p/3))^3 =0  ..(ii)  ⇒u^3 =((−q±(√(q^2 +4((p/3))^3 )))/2)  =−(q/2)±(√(((q/2))^2 +((p/3))^3 ))  how the solutions will be depends on  Δ=((q/2))^2 +((p/3))^3     one case is e.g.:  ⇒u=^3 (√(−(q/2)±(√(((q/2))^2 +((p/3))^3 ))))  v^3 =u^3 +q=−(q/2)±(√(((q/2))^2 +((p/3))^3 ))+q  v^3 =(q/2)±(√(((q/2))^2 +((p/3))^3 ))  ⇒v=^3 (√((q/2)±(√(((q/2))^2 +((p/3))^3 ))))    x=u−v  ⇒x=^3 (√(−(q/2)±(√(((q/2))^2 +((p/3))^3 ))))−^3 (√((q/2)±(√(((q/2))^2 +((p/3))^3 ))))

$${Yes},\:{every}\:{cubic}\:{equation}\:{can}\:{be} \\ $$$${reduced}\:{to}\:{the}\:{form} \\ $$$${x}^{\mathrm{3}} +{px}+{q}=\mathrm{0}\:\:\:\:...\left({i}\right) \\ $$$${let}\:{v}=\frac{{p}}{\mathrm{3}{u}},\:{u}^{\mathrm{3}} −{v}^{\mathrm{3}} =−{q} \\ $$$${and}\:{x}={u}−{v} \\ $$$$\left({i}\right)\:{will}\:{become} \\ $$$${u}^{\mathrm{3}} +{q}−\left(\frac{{p}}{\mathrm{3}{u}}\right)^{\mathrm{3}} =\mathrm{0} \\ $$$${or} \\ $$$$\left({u}^{\mathrm{3}} \right)^{\mathrm{2}} +{q}\left({u}^{\mathrm{3}} \right)−\left(\frac{{p}}{\mathrm{3}}\right)^{\mathrm{3}} =\mathrm{0}\:\:..\left({ii}\right) \\ $$$$\Rightarrow{u}^{\mathrm{3}} =\frac{−{q}\pm\sqrt{{q}^{\mathrm{2}} +\mathrm{4}\left(\frac{{p}}{\mathrm{3}}\right)^{\mathrm{3}} }}{\mathrm{2}} \\ $$$$=−\frac{{q}}{\mathrm{2}}\pm\sqrt{\left(\frac{{q}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{p}}{\mathrm{3}}\right)^{\mathrm{3}} } \\ $$$${how}\:{the}\:{solutions}\:{will}\:{be}\:{depends}\:{on} \\ $$$$\Delta=\left(\frac{{q}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{p}}{\mathrm{3}}\right)^{\mathrm{3}} \\ $$$$ \\ $$$${one}\:{case}\:{is}\:{e}.{g}.: \\ $$$$\Rightarrow{u}=\:^{\mathrm{3}} \sqrt{−\frac{{q}}{\mathrm{2}}\pm\sqrt{\left(\frac{{q}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{p}}{\mathrm{3}}\right)^{\mathrm{3}} }} \\ $$$${v}^{\mathrm{3}} ={u}^{\mathrm{3}} +{q}=−\frac{{q}}{\mathrm{2}}\pm\sqrt{\left(\frac{{q}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{p}}{\mathrm{3}}\right)^{\mathrm{3}} }+{q} \\ $$$${v}^{\mathrm{3}} =\frac{{q}}{\mathrm{2}}\pm\sqrt{\left(\frac{{q}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{p}}{\mathrm{3}}\right)^{\mathrm{3}} } \\ $$$$\Rightarrow{v}=\:^{\mathrm{3}} \sqrt{\frac{{q}}{\mathrm{2}}\pm\sqrt{\left(\frac{{q}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{p}}{\mathrm{3}}\right)^{\mathrm{3}} }} \\ $$$$ \\ $$$${x}={u}−{v} \\ $$$$\Rightarrow{x}=\:^{\mathrm{3}} \sqrt{−\frac{{q}}{\mathrm{2}}\pm\sqrt{\left(\frac{{q}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{p}}{\mathrm{3}}\right)^{\mathrm{3}} }}−\:^{\mathrm{3}} \sqrt{\frac{{q}}{\mathrm{2}}\pm\sqrt{\left(\frac{{q}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{p}}{\mathrm{3}}\right)^{\mathrm{3}} }} \\ $$

Commented by ajfour last updated on 23/Dec/17

great fortune sir. thank you  very sincerely!

$${great}\:{fortune}\:{sir}.\:{thank}\:{you} \\ $$$${very}\:{sincerely}! \\ $$

Commented by ajfour last updated on 10/Jun/18

my favourite post.

$${my}\:{favourite}\:{post}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com