Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26558 by abdo imad last updated on 26/Dec/17

find the value of ∫_0 ^∞  ((sinx)/(x(1+x^2 )))dx

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sinx}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx} \\ $$

Commented by abdo imad last updated on 27/Dec/17

let put  I= ∫_0 ^∞  ((sinx)/(x(1+x^2 ))) dx   we know that  ∫_0 ^∞ ((cos(αx))/(1+x^2 )) dx= (π/2) e^(−α)   let take α≥0⇒  ∫_0 ^1  (π/2) e^(−α) dα= −(π/2)[ e^(−α) ]_0 ^1 =−(π/2)( e^(−1) −1)  =(π/2)(1− e^(−1) ) and from another side  ∫_0 ^1  (π/2) e^(−α)   dα  = ∫_0 ^1  (∫_0 ^∞ ((cos(αx))/(1+x^2 ))dx)dα    = ∫_0 ^∞ ( ∫_0 ^1 cos(αx)dα)(dx/(1+x^2 ))  (by fubini theorem )  =∫_0 ^∞ ( [((sin(αx))/x) ]_(α=0) ^(α=1) ) (dx/(1+x^2 ))= ∫_0 ^∞  ((sinx)/x).(( dx)/(1+x^2 ))  ⇒ ∫_0 ^∞   ((sinx)/(x(1+x^2 )))dx= (π/2)(1− (1/e)).

$${let}\:{put}\:\:{I}=\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sinx}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:{dx}\:\:\:{we}\:{know}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \frac{{cos}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}=\:\frac{\pi}{\mathrm{2}}\:{e}^{−\alpha} \\ $$$${let}\:{take}\:\alpha\geqslant\mathrm{0}\Rightarrow\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\pi}{\mathrm{2}}\:{e}^{−\alpha} {d}\alpha=\:−\frac{\pi}{\mathrm{2}}\left[\:{e}^{−\alpha} \right]_{\mathrm{0}} ^{\mathrm{1}} =−\frac{\pi}{\mathrm{2}}\left(\:{e}^{−\mathrm{1}} −\mathrm{1}\right) \\ $$$$=\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\:{e}^{−\mathrm{1}} \right)\:{and}\:{from}\:{another}\:{side} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\pi}{\mathrm{2}}\:{e}^{−\alpha} \:\:{d}\alpha\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\int_{\mathrm{0}} ^{\infty} \frac{{cos}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\right){d}\alpha \\ $$$$ \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \left(\:\int_{\mathrm{0}} ^{\mathrm{1}} {cos}\left(\alpha{x}\right){d}\alpha\right)\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\:\left({by}\:{fubini}\:{theorem}\:\right) \\ $$$$=\int_{\mathrm{0}} ^{\infty} \left(\:\left[\frac{{sin}\left(\alpha{x}\right)}{{x}}\:\right]_{\alpha=\mathrm{0}} ^{\alpha=\mathrm{1}} \right)\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }=\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sinx}}{{x}}.\frac{\:{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sinx}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}=\:\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\:\frac{\mathrm{1}}{{e}}\right). \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com