Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 26574 by abdo imad last updated on 26/Dec/17

study the nature of the serie   Σ_(n=2) ^∝   ((cosn)/(√(n+(−1)^n ))) z^n

$${study}\:{the}\:{nature}\:{of}\:{the}\:{serie}\:\:\:\sum_{{n}=\mathrm{2}} ^{\propto} \:\:\frac{{cosn}}{\sqrt{{n}+\left(−\mathrm{1}\right)^{{n}} }}\:{z}^{{n}} \\ $$

Commented by abdo imad last updated on 29/Dec/17

we have   (1/(√(n+(−1)^n ))) = (1/(√n))  (1/(√( 1+(((−1)^n )/n))))  = (1/(√n)) (1+ (((−1)^n )/n) )^(−(1/2))  but we know?that  (1+u)^α ∼_(α∈v(0))   1+αu  ∼  (1/(√n))(1−(((−1)^n )/(2n)))  and   ((cosn)/(√( n+(−1)^n )))∼   ((cosn)/(√n))−(((−1)^n )/(2n)) +o((1/(n))))  the serie Σ_(n≥1) ((cosn)/(√n)) is convergente due to abel dirichlet   theorem having r=1 for radius also Σ_(n≥1) (((−1)^n )/(2n)) is convergente  having r=1 for radius⇒  Σ_(n≥2) ((cosn)/(√(n+(−1)^n ))) z^n  is convergente  having r≤1  for radius of convergence.

$${we}\:{have}\:\:\:\frac{\mathrm{1}}{\sqrt{{n}+\left(−\mathrm{1}\right)^{{n}} }}\:=\:\frac{\mathrm{1}}{\sqrt{{n}}}\:\:\frac{\mathrm{1}}{\sqrt{\:\mathrm{1}+\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}}} \\ $$$$=\:\frac{\mathrm{1}}{\sqrt{{n}}}\:\left(\mathrm{1}+\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\:\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{but}\:{we}\:{know}?{that}\:\:\left(\mathrm{1}+{u}\right)^{\alpha} \sim_{\alpha\in{v}\left(\mathrm{0}\right)} \:\:\mathrm{1}+\alpha{u} \\ $$$$\sim\:\:\frac{\mathrm{1}}{\sqrt{{n}}}\left(\mathrm{1}−\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}}\right)\:\:{and}\:\:\:\frac{{cosn}}{\sqrt{\:{n}+\left(−\mathrm{1}\right)^{{n}} }}\sim\:\:\:\frac{{cosn}}{\sqrt{{n}}}−\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}}\:+{o}\left(\frac{\mathrm{1}}{\left.{n}\right)}\right) \\ $$$${the}\:{serie}\:\sum_{{n}\geqslant\mathrm{1}} \frac{{cosn}}{\sqrt{{n}}}\:{is}\:{convergente}\:{due}\:{to}\:{abel}\:{dirichlet}\: \\ $$$${theorem}\:{having}\:{r}=\mathrm{1}\:{for}\:{radius}\:{also}\:\sum_{{n}\geqslant\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}}\:{is}\:{convergente} \\ $$$${having}\:{r}=\mathrm{1}\:{for}\:{radius}\Rightarrow\:\:\sum_{{n}\geqslant\mathrm{2}} \frac{{cosn}}{\sqrt{{n}+\left(−\mathrm{1}\right)^{{n}} }}\:{z}^{{n}} \:{is}\:{convergente} \\ $$$${having}\:{r}\leqslant\mathrm{1}\:\:{for}\:{radius}\:{of}\:{convergence}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com