Question and Answers Forum

All Questions      Topic List

Gravitation Questions

Previous in All Question      Next in All Question      

Previous in Gravitation      Next in Gravitation      

Question Number 27074 by Tinkutara last updated on 01/Jan/18

Answered by mrW1 last updated on 01/Jan/18

Commented by mrW1 last updated on 02/Jan/18

dm=λdx=(a_0 +b_0 x^2 )dx  dF=((Gmdm)/((a+x)^2 ))=((Gm(a_0 +b_0 x^2 )dx)/((a+x)^2 ))  F=∫_0 ^( L) ((Gm(a_0 +b_0 x^2 )dx)/((a+x)^2 ))  F=Gm∫_0 ^( L) (((a_0 +b_0 x^2 )dx)/((a+x)^2 ))  F=Gm{a_0 [(1/(a+x))]_L ^0 +b_0 ∫_0 ^( L) ((x^2 dx)/((a+x)^2 ))}  F=Gm{a_0 ((1/a)−(1/(a+L)))+b_0 [x−2a ln (x+a)−(a^2 /(x+a))]_0 ^L }  F=Gm{a_0 ((1/a)−(1/(a+L)))+b_0 (L+2a ln (a/(a+L))+a−(a^2 /(a+L)))}  F=Gm{((a_0 L)/(a(a+L)))+b_0 [2a ln (a/(a+L))+(((2a+L)L)/(a+L))]}

$${dm}=\lambda{dx}=\left({a}_{\mathrm{0}} +{b}_{\mathrm{0}} {x}^{\mathrm{2}} \right){dx} \\ $$$${dF}=\frac{{Gmdm}}{\left({a}+{x}\right)^{\mathrm{2}} }=\frac{{Gm}\left({a}_{\mathrm{0}} +{b}_{\mathrm{0}} {x}^{\mathrm{2}} \right){dx}}{\left({a}+{x}\right)^{\mathrm{2}} } \\ $$$${F}=\int_{\mathrm{0}} ^{\:{L}} \frac{{Gm}\left({a}_{\mathrm{0}} +{b}_{\mathrm{0}} {x}^{\mathrm{2}} \right){dx}}{\left({a}+{x}\right)^{\mathrm{2}} } \\ $$$${F}={Gm}\int_{\mathrm{0}} ^{\:{L}} \frac{\left({a}_{\mathrm{0}} +{b}_{\mathrm{0}} {x}^{\mathrm{2}} \right){dx}}{\left({a}+{x}\right)^{\mathrm{2}} } \\ $$$${F}={Gm}\left\{{a}_{\mathrm{0}} \left[\frac{\mathrm{1}}{{a}+{x}}\right]_{{L}} ^{\mathrm{0}} +{b}_{\mathrm{0}} \int_{\mathrm{0}} ^{\:{L}} \frac{{x}^{\mathrm{2}} {dx}}{\left({a}+{x}\right)^{\mathrm{2}} }\right\} \\ $$$${F}={Gm}\left\{{a}_{\mathrm{0}} \left(\frac{\mathrm{1}}{{a}}−\frac{\mathrm{1}}{{a}+{L}}\right)+{b}_{\mathrm{0}} \left[{x}−\mathrm{2}{a}\:\mathrm{ln}\:\left({x}+{a}\right)−\frac{{a}^{\mathrm{2}} }{{x}+{a}}\right]_{\mathrm{0}} ^{{L}} \right\} \\ $$$${F}={Gm}\left\{{a}_{\mathrm{0}} \left(\frac{\mathrm{1}}{{a}}−\frac{\mathrm{1}}{{a}+{L}}\right)+{b}_{\mathrm{0}} \left({L}+\mathrm{2}{a}\:\mathrm{ln}\:\frac{{a}}{{a}+{L}}+{a}−\frac{{a}^{\mathrm{2}} }{{a}+{L}}\right)\right\} \\ $$$${F}={Gm}\left\{\frac{{a}_{\mathrm{0}} {L}}{{a}\left({a}+{L}\right)}+{b}_{\mathrm{0}} \left[\mathrm{2}{a}\:\mathrm{ln}\:\frac{{a}}{{a}+{L}}+\frac{\left(\mathrm{2}{a}+{L}\right){L}}{{a}+{L}}\right]\right\} \\ $$

Commented by mrW1 last updated on 02/Jan/18

 ∫(x^2 /((a+x)^2 ))dx   =∫((x^2 +2ax+a^2 −2ax−a^2 )/((a+x)^2 ))dx   =∫[1−((2ax+a^2 )/((a+x)^2 ))]dx   =∫[1−((2ax+2a^2 −a^2 )/((a+x)^2 ))]dx   =x−∫((2a(x+a))/((a+x)^2 ))dx+a^2 ∫(1/((a+x)^2 ))dx   =x−2a∫(1/(a+x))dx−(a^2 /(a+x))   =x−2a ln ∣a+x∣−(a^2 /(a+x))+C

$$\:\int\frac{{x}^{\mathrm{2}} }{\left({a}+{x}\right)^{\mathrm{2}} }{dx} \\ $$$$\:=\int\frac{{x}^{\mathrm{2}} +\mathrm{2}{ax}+{a}^{\mathrm{2}} −\mathrm{2}{ax}−{a}^{\mathrm{2}} }{\left({a}+{x}\right)^{\mathrm{2}} }{dx} \\ $$$$\:=\int\left[\mathrm{1}−\frac{\mathrm{2}{ax}+{a}^{\mathrm{2}} }{\left({a}+{x}\right)^{\mathrm{2}} }\right]{dx} \\ $$$$\:=\int\left[\mathrm{1}−\frac{\mathrm{2}{ax}+\mathrm{2}{a}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\left({a}+{x}\right)^{\mathrm{2}} }\right]{dx} \\ $$$$\:={x}−\int\frac{\mathrm{2}{a}\left({x}+{a}\right)}{\left({a}+{x}\right)^{\mathrm{2}} }{dx}+{a}^{\mathrm{2}} \int\frac{\mathrm{1}}{\left({a}+{x}\right)^{\mathrm{2}} }{dx} \\ $$$$\:={x}−\mathrm{2}{a}\int\frac{\mathrm{1}}{{a}+{x}}{dx}−\frac{{a}^{\mathrm{2}} }{{a}+{x}} \\ $$$$\:={x}−\mathrm{2}{a}\:\mathrm{ln}\:\mid{a}+{x}\mid−\frac{{a}^{\mathrm{2}} }{{a}+{x}}+{C} \\ $$

Commented by Tinkutara last updated on 02/Jan/18

How do you solved ∫(x^2 /((a+x)^2 ))dx?

$${How}\:{do}\:{you}\:{solved}\:\int\frac{{x}^{\mathrm{2}} }{\left({a}+{x}\right)^{\mathrm{2}} }{dx}? \\ $$

Commented by Tinkutara last updated on 02/Jan/18

There is slight mistake in ln term. Answer given is:

Commented by Tinkutara last updated on 02/Jan/18

Commented by mrW1 last updated on 02/Jan/18

please recheck the answer in your book.  i think the last term should be  +2ab_0  ln (a/(a+L)) or  −2ab_0  ln ((a+L)/a)

$${please}\:{recheck}\:{the}\:{answer}\:{in}\:{your}\:{book}. \\ $$$${i}\:{think}\:{the}\:{last}\:{term}\:{should}\:{be} \\ $$$$+\mathrm{2}{ab}_{\mathrm{0}} \:\mathrm{ln}\:\frac{{a}}{{a}+{L}}\:{or} \\ $$$$−\mathrm{2}{ab}_{\mathrm{0}} \:\mathrm{ln}\:\frac{{a}+{L}}{{a}} \\ $$

Commented by mrW1 last updated on 02/Jan/18

 [−2a ln (a+x)]_0 ^L =−2a[ln (a+L)−ln a]=−2a ln ((a+L)/a)=2a ln (a/(a+L))

$$\:\left[−\mathrm{2}{a}\:\mathrm{ln}\:\left({a}+{x}\right)\right]_{\mathrm{0}} ^{{L}} =−\mathrm{2}{a}\left[\mathrm{ln}\:\left({a}+{L}\right)−\mathrm{ln}\:{a}\right]=−\mathrm{2}{a}\:\mathrm{ln}\:\frac{{a}+{L}}{{a}}=\mathrm{2}{a}\:\mathrm{ln}\:\frac{{a}}{{a}+{L}} \\ $$

Commented by Tinkutara last updated on 03/Jan/18

Thank you very much Sir!

Answered by ajfour last updated on 02/Jan/18

F=∫_0 ^(  L) ((Gm(a_0 +b_0 x^2 )dx)/((x+a)^2 ))    =Gm∫_a ^(  a+L) (([a_0 +b_0 (t−a)^2 ]dt)/t^2 )   =Gm(−(a_0 /t))∣_a ^(a+L) +b_0 Gm∫_a ^(  a+L) [1−((2a)/t)+(a^2 /t^2 )]dt  =((Gma_0 L)/(a(a+L)))+b_0 Gm[L−2aln (((a+L)/a))+((a^2 L)/(a(a+L)))]  =Gm[((L(a_0 +a^2 b_0 ))/(a(a+L)))+b_0 L−2ab_0 ln (1+(L/a))] .

$${F}=\int_{\mathrm{0}} ^{\:\:{L}} \frac{{Gm}\left({a}_{\mathrm{0}} +{b}_{\mathrm{0}} {x}^{\mathrm{2}} \right){dx}}{\left({x}+{a}\right)^{\mathrm{2}} } \\ $$$$\:\:={Gm}\int_{{a}} ^{\:\:{a}+{L}} \frac{\left[{a}_{\mathrm{0}} +{b}_{\mathrm{0}} \left({t}−{a}\right)^{\mathrm{2}} \right]{dt}}{{t}^{\mathrm{2}} } \\ $$$$\:={Gm}\left(−\frac{{a}_{\mathrm{0}} }{{t}}\right)\mid_{{a}} ^{{a}+{L}} +{b}_{\mathrm{0}} {Gm}\int_{{a}} ^{\:\:{a}+{L}} \left[\mathrm{1}−\frac{\mathrm{2}{a}}{{t}}+\frac{{a}^{\mathrm{2}} }{{t}^{\mathrm{2}} }\right]{dt} \\ $$$$=\frac{{Gma}_{\mathrm{0}} {L}}{{a}\left({a}+{L}\right)}+{b}_{\mathrm{0}} {Gm}\left[{L}−\mathrm{2}{a}\mathrm{ln}\:\left(\frac{{a}+{L}}{{a}}\right)+\frac{{a}^{\mathrm{2}} {L}}{{a}\left({a}+{L}\right)}\right] \\ $$$$={Gm}\left[\frac{{L}\left({a}_{\mathrm{0}} +{a}^{\mathrm{2}} {b}_{\mathrm{0}} \right)}{{a}\left({a}+{L}\right)}+{b}_{\mathrm{0}} {L}−\mathrm{2}{ab}_{\mathrm{0}} \mathrm{ln}\:\left(\mathrm{1}+\frac{{L}}{{a}}\right)\right]\:. \\ $$

Commented by mrW1 last updated on 02/Jan/18

thanks for confirming the result!

$${thanks}\:{for}\:{confirming}\:{the}\:{result}! \\ $$

Commented by Tinkutara last updated on 03/Jan/18

Thank you very much Sir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com