Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27342 by abdo imad last updated on 05/Jan/18

find f(x)= ∫_0 ^∞   (e^(−x(1+t^2 )) /(1+t^2 )) dt  interms ofx  with x≥0   and calculate  ∫_0 ^∞   e^(−t^2 ) dt .

$${find}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} }{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:\:{interms}\:{ofx} \\ $$$${with}\:{x}\geqslant\mathrm{0}\:\:\:{and}\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:. \\ $$

Commented by abdo imad last updated on 08/Jan/18

after verifying that f is derivable in [0,∝[  f^, (x)= ∫_0 ^∞ (∂/∂x)( (e^(−x(1+t^2 )) /(1+t^2 )) )dt= ∫_0 ^∞ − e^(−x(1+t^2 )) dt  =−e^(−x)  ∫_0 ^∞ e^(−xt^2 ) dt   the ch. (√x) t = u give  f^, (x)= −e^(−x)  ∫_0 ^∞  e^(−u^2 )   (du/(√x))=−(e^(−x) /(√x)) ∫_0 ^∞  e^(−u^2 ) du  =−((√π)/2)  (e^(−x) /(√x))                 (x>0)  ⇒f(x)= −((√π)/2) ∫_0 ^x   (e^(−t) /(√t)) dt  +λ   after that we use the ch.(√t)=u  f(x)=−((√π)/2) ∫_0 ^(√x)    (e^(−u^2 ) /u) 2udu +λ  =λ − (√π)  ∫_0 ^(√x)   e^(−u^2 ) du  lim_(x−>∝)  f(x)=0= λ −(√π) ∫_0 ^∝  e^(−u^2 ) du=λ−(π/2)  ⇒  λ=(π/2)  finally  f(x)= (π/2) −(√π)  ∫_0 ^(√x)    e^(−u^2 ) du  we have a lots of method to prove that  ∫_0 ^∞  e^(−x^2 ) dx=((√π)/2)  .

$${after}\:{verifying}\:{that}\:{f}\:{is}\:{derivable}\:{in}\:\left[\mathrm{0},\propto\left[\right.\right. \\ $$$${f}^{,} \left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \frac{\partial}{\partial{x}}\left(\:\frac{{e}^{−{x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} }{\mathrm{1}+{t}^{\mathrm{2}} }\:\right){dt}=\:\int_{\mathrm{0}} ^{\infty} −\:{e}^{−{x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} {dt} \\ $$$$=−{e}^{−{x}} \:\int_{\mathrm{0}} ^{\infty} {e}^{−{xt}^{\mathrm{2}} } {dt}\:\:\:{the}\:{ch}.\:\sqrt{{x}}\:{t}\:=\:{u}\:{give} \\ $$$${f}^{,} \left({x}\right)=\:−{e}^{−{x}} \:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}^{\mathrm{2}} } \:\:\frac{{du}}{\sqrt{{x}}}=−\frac{{e}^{−{x}} }{\sqrt{{x}}}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}^{\mathrm{2}} } {du} \\ $$$$=−\frac{\sqrt{\pi}}{\mathrm{2}}\:\:\frac{{e}^{−{x}} }{\sqrt{{x}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({x}>\mathrm{0}\right) \\ $$$$\Rightarrow{f}\left({x}\right)=\:−\frac{\sqrt{\pi}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{{x}} \:\:\frac{{e}^{−{t}} }{\sqrt{{t}}}\:{dt}\:\:+\lambda\:\:\:{after}\:{that}\:{we}\:{use}\:{the}\:{ch}.\sqrt{{t}}={u} \\ $$$${f}\left({x}\right)=−\frac{\sqrt{\pi}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\sqrt{{x}}} \:\:\:\frac{{e}^{−{u}^{\mathrm{2}} } }{{u}}\:\mathrm{2}{udu}\:+\lambda \\ $$$$=\lambda\:−\:\sqrt{\pi}\:\:\int_{\mathrm{0}} ^{\sqrt{{x}}} \:\:{e}^{−{u}^{\mathrm{2}} } {du} \\ $$$${lim}_{{x}−>\propto} \:{f}\left({x}\right)=\mathrm{0}=\:\lambda\:−\sqrt{\pi}\:\int_{\mathrm{0}} ^{\propto} \:{e}^{−{u}^{\mathrm{2}} } {du}=\lambda−\frac{\pi}{\mathrm{2}}\:\:\Rightarrow\:\:\lambda=\frac{\pi}{\mathrm{2}} \\ $$$${finally}\:\:{f}\left({x}\right)=\:\frac{\pi}{\mathrm{2}}\:−\sqrt{\pi}\:\:\int_{\mathrm{0}} ^{\sqrt{{x}}} \:\:\:{e}^{−{u}^{\mathrm{2}} } {du} \\ $$$${we}\:{have}\:{a}\:{lots}\:{of}\:{method}\:{to}\:{prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}} } {dx}=\frac{\sqrt{\pi}}{\mathrm{2}}\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com