Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27400 by Tinkutara last updated on 06/Jan/18

Evaluate ∫_r ^0 (√(x/(r−x))) dx

$${Evaluate}\:\underset{{r}} {\overset{\mathrm{0}} {\int}}\sqrt{\frac{{x}}{{r}−{x}}}\:{dx} \\ $$

Commented by Tinkutara last updated on 07/Jan/18

But this integral was used in a Physics  question where its value can′t be  negative. It should be only ((πr)/2). It is  used in question 27445.

$${But}\:{this}\:{integral}\:{was}\:{used}\:{in}\:{a}\:{Physics} \\ $$$${question}\:{where}\:{its}\:{value}\:{can}'{t}\:{be} \\ $$$${negative}.\:{It}\:{should}\:{be}\:{only}\:\frac{\pi{r}}{\mathrm{2}}.\:{It}\:{is} \\ $$$${used}\:{in}\:{question}\:\mathrm{27445}. \\ $$

Commented by abdo imad last updated on 06/Jan/18

let do the ch.   (√(x/(r−x)))   =t⇔  (x/(r−x)) =t^2 ⇔x=(r−x)t^2   ⇔x+xt^2 =rt^2 ⇔ (1+t^2 )x=rt^2 ⇔x= ((rt^2 )/(1+t^2 ))    x=((r(1+t^2 −1))/(1+t^2 )) =r −(r/(1+t^2 ))⇔ (dx/dt)= ((2rt)/((1+t^2 )^2 ))  ∫_r ^0 (√(x/(r−x))) dx= ∫_∝ ^0 t((2rt)/((1+t^2 )^2 ))dt = −2r ∫_0 ^∞ (t^2 /((1+t^2 )^2 ))dt  but  ∫_0 ^∞ (t^2 /((1+t^2 )^2 ))dt= ∫_0 ^∞ (dt/(1+t^2 )) −∫_0 ^∞  (dt/((1+t^2 )^2 ))  =(π/2) −∫_0 ^∞ (dt/((1+t^2 )^2 )) and by residus theorem  ∫_0 ^∞ (dt/((1+t^2 )^2 ))=(1/2)∫_R  (dt/((1+t^2 )^2 ))=(1/2) 2iπ Res(f ,i)with  f(z)= (1/((1+z^2 )^2 ))= (1/((z−i)^2 (z+i)^2 )) and i is a double pole of f  Res(f,i)=lim_(z−>i)  (1/((2−1)!))((z−i)^2 f(z))^,   =lim_(z−>i) ((z+i)^(−2) )^, =lim_(z−>i) −2(z+i)^(−3)   = −2(2i)^(−3) =−2(1/((2i)^3 ))=(1/(4i))  ∫_0 ^∞ (dt/((1+t^2 )^2 ))=iπ (1/(4i))= (π/4)  ∫_r ^0 (√(  (x/(r−x)))) dx =−2r((π/2) −(π/4))=−2r (π/4) =((−rπ)/2) .

$${let}\:{do}\:{the}\:{ch}.\:\:\:\sqrt{\frac{{x}}{{r}−{x}}}\:\:\:={t}\Leftrightarrow\:\:\frac{{x}}{{r}−{x}}\:={t}^{\mathrm{2}} \Leftrightarrow{x}=\left({r}−{x}\right){t}^{\mathrm{2}} \\ $$$$\Leftrightarrow{x}+{xt}^{\mathrm{2}} ={rt}^{\mathrm{2}} \Leftrightarrow\:\left(\mathrm{1}+{t}^{\mathrm{2}} \right){x}={rt}^{\mathrm{2}} \Leftrightarrow{x}=\:\frac{{rt}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:\: \\ $$$${x}=\frac{{r}\left(\mathrm{1}+{t}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }\:={r}\:−\frac{{r}}{\mathrm{1}+{t}^{\mathrm{2}} }\Leftrightarrow\:\frac{{dx}}{{dt}}=\:\frac{\mathrm{2}{rt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\int_{{r}} ^{\mathrm{0}} \sqrt{\frac{{x}}{{r}−{x}}}\:{dx}=\:\int_{\propto} ^{\mathrm{0}} {t}\frac{\mathrm{2}{rt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}\:=\:−\mathrm{2}{r}\:\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mathrm{2}} }{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$${but}\:\:\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mathrm{2}} }{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}=\:\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:−\int_{\mathrm{0}} ^{\infty} \:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$=\frac{\pi}{\mathrm{2}}\:−\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{and}\:{by}\:{residus}\:{theorem} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}\int_{{R}} \:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{2}{i}\pi\:{Res}\left({f}\:,{i}\right){with} \\ $$$${f}\left({z}\right)=\:\frac{\mathrm{1}}{\left(\mathrm{1}+{z}^{\mathrm{2}} \right)^{\mathrm{2}} }=\:\frac{\mathrm{1}}{\left({z}−{i}\right)^{\mathrm{2}} \left({z}+{i}\right)^{\mathrm{2}} }\:{and}\:{i}\:{is}\:{a}\:{double}\:{pole}\:{of}\:{f} \\ $$$${Res}\left({f},{i}\right)={lim}_{{z}−>{i}} \:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left(\left({z}−{i}\right)^{\mathrm{2}} {f}\left({z}\right)\right)^{,} \\ $$$$={lim}_{{z}−>{i}} \left(\left({z}+{i}\right)^{−\mathrm{2}} \right)^{,} ={lim}_{{z}−>{i}} −\mathrm{2}\left({z}+{i}\right)^{−\mathrm{3}} \\ $$$$=\:−\mathrm{2}\left(\mathrm{2}{i}\right)^{−\mathrm{3}} =−\mathrm{2}\frac{\mathrm{1}}{\left(\mathrm{2}{i}\right)^{\mathrm{3}} }=\frac{\mathrm{1}}{\mathrm{4}{i}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }={i}\pi\:\frac{\mathrm{1}}{\mathrm{4}{i}}=\:\frac{\pi}{\mathrm{4}} \\ $$$$\int_{{r}} ^{\mathrm{0}} \sqrt{\:\:\frac{{x}}{{r}−{x}}}\:{dx}\:=−\mathrm{2}{r}\left(\frac{\pi}{\mathrm{2}}\:−\frac{\pi}{\mathrm{4}}\right)=−\mathrm{2}{r}\:\frac{\pi}{\mathrm{4}}\:=\frac{−{r}\pi}{\mathrm{2}}\:. \\ $$

Commented by mrW1 last updated on 07/Jan/18

the result above is correct.    ∫_r ^( 0) (√(...)) dx is negative  ∫_0 ^( r) (√(...)) dx is positive

$${the}\:{result}\:{above}\:{is}\:{correct}. \\ $$$$ \\ $$$$\int_{{r}} ^{\:\mathrm{0}} \sqrt{...}\:{dx}\:{is}\:{negative} \\ $$$$\int_{\mathrm{0}} ^{\:{r}} \sqrt{...}\:{dx}\:{is}\:{positive} \\ $$

Commented by abdo imad last updated on 07/Jan/18

we must have 0<x<r because of (√(...))⇒ ∫_r ^o (...)dx=−∫_0 ^r (...)≤0

$${we}\:{must}\:{have}\:\mathrm{0}<{x}<{r}\:{because}\:{of}\:\sqrt{...}\Rightarrow\:\int_{{r}} ^{{o}} \left(...\right){dx}=−\int_{\mathrm{0}} ^{{r}} \left(...\right)\leqslant\mathrm{0} \\ $$

Answered by prakash jain last updated on 07/Jan/18

x=rcos^2  θ  dx=−2rcos θsin θdθ  ∫−2rcos θsin θ.((cos θ)/(sin θ))dθ  =−r∫2cos^2 θdθ  =−r∫(1+cos 2θ)dθ  =−r[θ+((sin 2θ)/2)]+C  =−r[cos^(−1) (√(x/r))+(√((x/r)×((r−x)/r)))]+C  =−r[cos^(−1) (√(x/r))+(1/r)(√(x(r−x)))]+C  taking limits  =−r[(π/2)−0]=−((πr)/2)

$${x}={r}\mathrm{cos}^{\mathrm{2}} \:\theta \\ $$$${dx}=−\mathrm{2}{r}\mathrm{cos}\:\theta\mathrm{sin}\:\theta{d}\theta \\ $$$$\int−\mathrm{2}{r}\mathrm{cos}\:\theta\mathrm{sin}\:\theta.\frac{\mathrm{cos}\:\theta}{\mathrm{sin}\:\theta}{d}\theta \\ $$$$=−{r}\int\mathrm{2cos}^{\mathrm{2}} \theta{d}\theta \\ $$$$=−{r}\int\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta\right){d}\theta \\ $$$$=−{r}\left[\theta+\frac{\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{2}}\right]+{C} \\ $$$$=−{r}\left[\mathrm{cos}^{−\mathrm{1}} \sqrt{\frac{{x}}{{r}}}+\sqrt{\frac{{x}}{{r}}×\frac{{r}−{x}}{{r}}}\right]+{C} \\ $$$$=−{r}\left[\mathrm{cos}^{−\mathrm{1}} \sqrt{\frac{{x}}{{r}}}+\frac{\mathrm{1}}{{r}}\sqrt{{x}\left({r}−{x}\right)}\right]+{C} \\ $$$${taking}\:{limits} \\ $$$$=−{r}\left[\frac{\pi}{\mathrm{2}}−\mathrm{0}\right]=−\frac{\pi{r}}{\mathrm{2}} \\ $$

Commented by mrW1 last updated on 07/Jan/18

very nice way!

$${very}\:{nice}\:{way}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com