Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 27627 by Rasheed.Sindhi last updated on 11/Jan/18

Commented by Rasheed.Sindhi last updated on 11/Jan/18

Given a circle of radius r. AB & CD  are two chords intersecting at E  OX and OY are respective distances  of chords CD and AB  from center  of the circle.  Find the area of region AEC  (The region bound by line segments  AE,CE and the minor arc AC^(⌢) )when  OX=x ,OY=y   ∠XOY=θ

$$\mathrm{Given}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{r}.\:\mathrm{AB}\:\&\:\mathrm{CD} \\ $$$$\mathrm{are}\:\mathrm{two}\:\mathrm{chords}\:\mathrm{intersecting}\:\mathrm{at}\:\mathrm{E} \\ $$$$\mathrm{OX}\:\mathrm{and}\:\mathrm{OY}\:\mathrm{are}\:\mathrm{respective}\:\mathrm{distances} \\ $$$$\mathrm{of}\:\mathrm{chords}\:\mathrm{CD}\:\mathrm{and}\:\mathrm{AB}\:\:\mathrm{from}\:\mathrm{center} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{circle}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{region}\:\mathrm{AEC} \\ $$$$\left(\mathrm{The}\:\mathrm{region}\:\mathrm{bound}\:\mathrm{by}\:\mathrm{line}\:\mathrm{segments}\right. \\ $$$$\left.\mathrm{AE},\mathrm{CE}\:\mathrm{and}\:\mathrm{the}\:\mathrm{minor}\:\mathrm{arc}\:\overset{\frown} {\mathrm{AC}}\right)\mathrm{when} \\ $$$$\mathrm{OX}=\mathrm{x}\:,\mathrm{OY}=\mathrm{y}\: \\ $$$$\angle\mathrm{XOY}=\theta \\ $$

Answered by mrW2 last updated on 14/Jan/18

Commented by mrW2 last updated on 14/Jan/18

Eqn. of circle:  x^2 +y^2 =r^2   ⇒y=(√(r^2 −x^2 ))    Eqn. of CD:  y=p+kx with k=−(1/(tan θ))  CD passes through F,  b sin θ=p−(1/(tan θ))×b cos θ  ⇒p=b(sin θ+((cos^2  θ)/(sin θ)))=(b/(sin θ))  ⇒y=(b/(sin θ))−(1/(tan θ))x=((b−x cos θ)/(sin θ))    Point D(x_D ,y_D ):  y=y_D =(√(r^2 −x^2 ))=((b−x cos θ)/(sin θ))  sin^2  θ(r^2 −x^2 )=b^2 −2b cos θ x+cos^2  θ x^2 )  x^2 −2b cos θ x−(r^2  sin^2  θ−b^2 )=0  ⇒x=x_D =((2b cos θ−(√(4b^4  cos^2  θ+4(r^2  sin^2  θ−b^2 ))))/2)  ⇒x_D =b[cos θ−sin θ(√(((r/b))^2 −1))]    x_C =b[cos θ+sin θ(√(((r/b))^2 −1))]≥a (!)    Area A=∫_x_D  ^( a) ((√(r^2 −x^2 ))−(b/(sin θ))+(1/(tan θ))x)dx  =[(r^2 /2) sin^(−1) (x/r)+((x(√(r^2 −x^2 )))/2)−((bx)/(sin θ))+(x^2 /(2tan θ))]_x_D  ^a   ⇒A=[(r^2 /2) (sin^(−1) (a/r)−sin^(−1) (x_D /r))+((a(√(r^2 −a^2 ))−x_D (√(r^2 −x_D ^2 )))/2)−((b(a−x_D ))/(sin θ))+((a^2 −x_D ^2 )/(2tan θ))]

$${Eqn}.\:{of}\:{circle}: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow{y}=\sqrt{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} } \\ $$$$ \\ $$$${Eqn}.\:{of}\:{CD}: \\ $$$${y}={p}+{kx}\:{with}\:{k}=−\frac{\mathrm{1}}{\mathrm{tan}\:\theta} \\ $$$${CD}\:{passes}\:{through}\:{F}, \\ $$$${b}\:\mathrm{sin}\:\theta={p}−\frac{\mathrm{1}}{\mathrm{tan}\:\theta}×{b}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{p}={b}\left(\mathrm{sin}\:\theta+\frac{\mathrm{cos}^{\mathrm{2}} \:\theta}{\mathrm{sin}\:\theta}\right)=\frac{{b}}{\mathrm{sin}\:\theta} \\ $$$$\Rightarrow{y}=\frac{{b}}{\mathrm{sin}\:\theta}−\frac{\mathrm{1}}{\mathrm{tan}\:\theta}{x}=\frac{{b}−{x}\:\mathrm{cos}\:\theta}{\mathrm{sin}\:\theta} \\ $$$$ \\ $$$${Point}\:{D}\left({x}_{{D}} ,{y}_{{D}} \right): \\ $$$${y}={y}_{{D}} =\sqrt{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} }=\frac{{b}−{x}\:\mathrm{cos}\:\theta}{\mathrm{sin}\:\theta} \\ $$$$\left.\mathrm{sin}^{\mathrm{2}} \:\theta\left({r}^{\mathrm{2}} −{x}^{\mathrm{2}} \right)={b}^{\mathrm{2}} −\mathrm{2}{b}\:\mathrm{cos}\:\theta\:{x}+\mathrm{cos}^{\mathrm{2}} \:\theta\:{x}^{\mathrm{2}} \right) \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{b}\:\mathrm{cos}\:\theta\:{x}−\left({r}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta−{b}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow{x}={x}_{{D}} =\frac{\mathrm{2}{b}\:\mathrm{cos}\:\theta−\sqrt{\mathrm{4}{b}^{\mathrm{4}} \:\mathrm{cos}^{\mathrm{2}} \:\theta+\mathrm{4}\left({r}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta−{b}^{\mathrm{2}} \right)}}{\mathrm{2}} \\ $$$$\Rightarrow{x}_{{D}} ={b}\left[\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\sqrt{\left(\frac{{r}}{{b}}\right)^{\mathrm{2}} −\mathrm{1}}\right] \\ $$$$ \\ $$$${x}_{{C}} ={b}\left[\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\sqrt{\left(\frac{{r}}{{b}}\right)^{\mathrm{2}} −\mathrm{1}}\right]\geqslant{a}\:\left(!\right) \\ $$$$ \\ $$$${Area}\:{A}=\int_{{x}_{{D}} } ^{\:{a}} \left(\sqrt{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} }−\frac{{b}}{\mathrm{sin}\:\theta}+\frac{\mathrm{1}}{\mathrm{tan}\:\theta}{x}\right){dx} \\ $$$$=\left[\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\:\mathrm{sin}^{−\mathrm{1}} \frac{{x}}{{r}}+\frac{{x}\sqrt{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} }}{\mathrm{2}}−\frac{{bx}}{\mathrm{sin}\:\theta}+\frac{{x}^{\mathrm{2}} }{\mathrm{2tan}\:\theta}\right]_{{x}_{{D}} } ^{{a}} \\ $$$$\Rightarrow{A}=\left[\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\:\left(\mathrm{sin}^{−\mathrm{1}} \frac{{a}}{{r}}−\mathrm{sin}^{−\mathrm{1}} \frac{{x}_{{D}} }{{r}}\right)+\frac{{a}\sqrt{{r}^{\mathrm{2}} −{a}^{\mathrm{2}} }−{x}_{{D}} \sqrt{{r}^{\mathrm{2}} −{x}_{{D}} ^{\mathrm{2}} }}{\mathrm{2}}−\frac{{b}\left({a}−{x}_{{D}} \right)}{\mathrm{sin}\:\theta}+\frac{{a}^{\mathrm{2}} −{x}_{{D}} ^{\mathrm{2}} }{\mathrm{2tan}\:\theta}\right] \\ $$

Commented by Rasheed.Sindhi last updated on 14/Jan/18

⅁r∃∀+   Sir!     Thank_(SSS..S)  ∨ery m⋓⋐∦!  Could you do also using non-  analytic approach.

$$\Game\mathrm{r}\exists\forall+\:\:\:\mathbb{S}\mathrm{ir}!\: \\ $$$$\:\:\underset{\mathcal{SSS}..\mathcal{S}} {\mathrm{Than}\Bbbk}\:\vee\mathrm{ery}\:\mathrm{m}\Cup\Subset\nparallel! \\ $$$$\mathrm{Could}\:\mathrm{you}\:\mathrm{do}\:\mathrm{also}\:\mathrm{using}\:\mathrm{non}- \\ $$$$\mathrm{analytic}\:\mathrm{approach}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com