Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27684 by abdo imad last updated on 12/Jan/18

1) prove the existence of the integral  I=∫_0 ^(π/2)   ((ln(1+cosx))/(cosx))dx  2)prove that I= ∫∫_D   ((siny)/(1+cosx cosy))dxdy with   D=[0,(π/2)]^2   3)find the value of I.

$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{existence}\:{of}\:{the}\:{integral} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{ln}\left(\mathrm{1}+{cosx}\right)}{{cosx}}{dx} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{I}=\:\int\int_{{D}} \:\:\frac{{siny}}{\mathrm{1}+{cosx}\:{cosy}}{dxdy}\:{with}\: \\ $$$${D}=\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]^{\mathrm{2}} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:{I}. \\ $$

Commented by abdo imad last updated on 16/Jan/18

1) the convergence of I is easy lim_(x→(π/2))  ((ln(1+cosx))/(cosx))  = lim_(x→(π/2))    ((−sinx)/(−sinx(1+cosx)))= 1  (by hospital theorem  )  so the function is local integrable in [0,(π/2)[  2) I= ∫∫_(0≤x≤ (π/2) and 0≤y≤ (π/2))   ((siny)/(1+cosx cosy)) dx dy  I= ∫_0 ^(π/2) (  ∫_0 ^(π/2)     (1/(cosx))(  −( ((1+cosx cosy)^, )/(1+cosx cosy)))dy)dx  I= ∫_0 ^(π/2)    (1/(cosx)) [−ln/1+cosx cosy/]_(y=0) ^(y=(π/2)) ]dx  I=∫_0 ^(π/(2 ))     ((ln(1+cosx))/(cosx))dx  3) I=∫_0 ^(π/2)  (∫_0 ^(π/2)      (dx/(1+cosy cosx)))siny dy  but   J= ∫_0 ^(π/2)      (dx/(1+cosy cosx))= ∫_0 ^(π/2)    (dx/(1+λ cosx)) (λ=cosy)and the ch.  tan((x/2))=t  give  J= ∫_0^  ^1      (((2dt)/(1+t^2 ))/(1+λ((1−t^2 )/(1+t^2 ))))= ∫_0 ^1    ((2dt)/(1+t^2  +λ−λt^2 ))  = ∫_0 ^1     ((2dt)/((1−λ)t^2  +1+λ))= (2/(1−λ)) ∫_0 ^1      (dt/(t^2 +((√(((1+λ)/(1−λ)))))))2  = (2/(√(1−λ^2 ))) ∫_0 ^(√((1−λ)/(1+λ)))        (du/(1+u^2 ))      (ch.t=(√((1+λ)/(1−λ)))  u)  =(2/(√(1−λ^2 ))) artan( (√((1−λ)/(1+λ)))))= (2/(siny)) artan(tan((y/(2)))))= (y/(siny))  I= ∫_0 ^(π/2) (y/(siny)) sinydy= [(1/2) y^2 ]_0 ^(π/2) = (1/2) (π^2 /4)= (π^2 /8) .

$$\left.\mathrm{1}\right)\:{the}\:{convergence}\:{of}\:{I}\:{is}\:{easy}\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\frac{{ln}\left(\mathrm{1}+{cosx}\right)}{{cosx}} \\ $$$$=\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\:\:\frac{−{sinx}}{−{sinx}\left(\mathrm{1}+{cosx}\right)}=\:\mathrm{1}\:\:\left({by}\:{hospital}\:{theorem}\:\:\right) \\ $$$${so}\:{the}\:{function}\:{is}\:{local}\:{integrable}\:{in}\:\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\left[\right.\right. \\ $$$$\left.\mathrm{2}\right)\:{I}=\:\int\int_{\mathrm{0}\leqslant{x}\leqslant\:\frac{\pi}{\mathrm{2}}\:{and}\:\mathrm{0}\leqslant{y}\leqslant\:\frac{\pi}{\mathrm{2}}} \:\:\frac{{siny}}{\mathrm{1}+{cosx}\:{cosy}}\:{dx}\:{dy} \\ $$$${I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{\mathrm{1}}{{cosx}}\left(\:\:−\left(\:\frac{\left.\mathrm{1}+{cosx}\:{cosy}\right)^{,} }{\mathrm{1}+{cosx}\:{cosy}}\right){dy}\right){dx}\right. \\ $$$$\left.{I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{\mathrm{1}}{{cosx}}\:\left[−{ln}/\mathrm{1}+{cosx}\:{cosy}/\right]_{{y}=\mathrm{0}} ^{{y}=\frac{\pi}{\mathrm{2}}} \right]{dx} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}\:}} \:\:\:\:\frac{{ln}\left(\mathrm{1}+{cosx}\right)}{{cosx}}{dx} \\ $$$$\left.\mathrm{3}\right)\:{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left(\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+{cosy}\:{cosx}}\right){siny}\:{dy}\:\:{but} \\ $$$$\:{J}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+{cosy}\:{cosx}}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{\mathrm{1}+\lambda\:{cosx}}\:\left(\lambda={cosy}\right){and}\:{the}\:{ch}. \\ $$$${tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:\:{give}\:\:{J}=\:\int_{\mathrm{0}^{} } ^{\mathrm{1}} \:\:\:\:\:\frac{\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }}{\mathrm{1}+\lambda\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} \:+\lambda−\lambda{t}^{\mathrm{2}} } \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{\mathrm{2}{dt}}{\left(\mathrm{1}−\lambda\right){t}^{\mathrm{2}} \:+\mathrm{1}+\lambda}=\:\frac{\mathrm{2}}{\mathrm{1}−\lambda}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} +\left(\sqrt{\left.\frac{\mathrm{1}+\lambda}{\mathrm{1}−\lambda}\right)}\right.}\mathrm{2} \\ $$$$=\:\frac{\mathrm{2}}{\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }}\:\int_{\mathrm{0}} ^{\sqrt{\frac{\mathrm{1}−\lambda}{\mathrm{1}+\lambda}}} \:\:\:\:\:\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\:\:\:\:\:\left({ch}.{t}=\sqrt{\frac{\mathrm{1}+\lambda}{\mathrm{1}−\lambda}}\:\:{u}\right) \\ $$$$=\frac{\mathrm{2}}{\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }}\:{artan}\left(\:\sqrt{\frac{\mathrm{1}−\lambda}{\left.\mathrm{1}+\lambda\right)}}\right)=\:\frac{\mathrm{2}}{{siny}}\:{artan}\left({tan}\left(\frac{{y}}{\left.\mathrm{2}\right)}\right)\right)=\:\frac{{y}}{{siny}} \\ $$$${I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{y}}{{siny}}\:{sinydy}=\:\left[\frac{\mathrm{1}}{\mathrm{2}}\:{y}^{\mathrm{2}} \right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\:\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\pi^{\mathrm{2}} }{\mathrm{4}}=\:\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com