Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27999 by abdo imad last updated on 18/Jan/18

find  I_(n,m)  = ∫_0 ^1  x^n  (1−x)^m  dx with  (n,m)∈N^★^2   and calculate  Σ_(n=0) ^∝  I_(n,m) .

$${find}\:\:{I}_{{n},{m}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:\left(\mathrm{1}−{x}\right)^{{m}} \:{dx}\:{with} \\ $$$$\left({n},{m}\right)\in{N}^{\bigstar^{\mathrm{2}} } \:{and}\:{calculate}\:\:\sum_{{n}=\mathrm{0}} ^{\propto} \:{I}_{{n},{m}} . \\ $$

Commented by abdo imad last updated on 22/Jan/18

due to uniform convergence we have  Σ_(n=0) ^(+∞)  I_(n,m)   = ∫_0 ^1 (1−x)^m (Σ_(n=0) ^∝  x^n   )  = ∫_0 ^1    (((1−x)^m )/(1−x))dx = ∫_0 ^1  (1−x)^(m−1) dx  = [((−1)/m)(1−x)^m ]_0 ^1 = (1/m)  for  m≥1  .let calculate I_(n,m)   by parts we have   I_(n,m) = [−(1/(m+1)) x^n (1−x)^(m+1) ]_0 ^1  +(1/(m+1))∫_0 ^1 nx^(n−1)  (1−x)^(m+1) dx  =(n/(m+1)) ∫_0 ^1   x^(n−1) (1−x)^(m+1) dx  I_(n,m)  =(n/(m+1)) I_(n−1,m+1) = (n/(m+1)) ((n−1)/(m+2)) I_(n−2,m+2)   =((n(n−1)....(n−p+1))/((m+1)(m+2)...(m+p))) I_(n−p,m+p)   = ((n!)/((m+1)(m+2) ....(m+n))) I_(0,m+n)   but  I_(0,m+n) =∫_0 ^1 (1−x)^(m+n) dx =[((−1)/(m+n+1))(1−x)^(m+n+1) ]_0 ^1   = (1/(m+n+1))  so  I_(n,m) =    ((n!)/((m+1)(m+2)...(m+n+1)))  I_(n,m) =  (((n!)(m!))/((m+n+1)!))  .

$${due}\:{to}\:{uniform}\:{convergence}\:{we}\:{have} \\ $$$$\sum_{{n}=\mathrm{0}} ^{+\infty} \:{I}_{{n},{m}} \:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{m}} \left(\sum_{{n}=\mathrm{0}} ^{\propto} \:{x}^{{n}} \:\:\right) \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\left(\mathrm{1}−{x}\right)^{{m}} }{\mathrm{1}−{x}}{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{1}−{x}\right)^{{m}−\mathrm{1}} {dx} \\ $$$$=\:\left[\frac{−\mathrm{1}}{{m}}\left(\mathrm{1}−{x}\right)^{{m}} \right]_{\mathrm{0}} ^{\mathrm{1}} =\:\frac{\mathrm{1}}{{m}}\:\:{for}\:\:{m}\geqslant\mathrm{1}\:\:.{let}\:{calculate}\:{I}_{{n},{m}} \\ $$$${by}\:{parts}\:{we}\:{have}\: \\ $$$${I}_{{n},{m}} =\:\left[−\frac{\mathrm{1}}{{m}+\mathrm{1}}\:{x}^{{n}} \left(\mathrm{1}−{x}\right)^{{m}+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:+\frac{\mathrm{1}}{{m}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} {nx}^{{n}−\mathrm{1}} \:\left(\mathrm{1}−{x}\right)^{{m}+\mathrm{1}} {dx} \\ $$$$=\frac{{n}}{{m}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{{n}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{m}+\mathrm{1}} {dx} \\ $$$${I}_{{n},{m}} \:=\frac{{n}}{{m}+\mathrm{1}}\:{I}_{{n}−\mathrm{1},{m}+\mathrm{1}} =\:\frac{{n}}{{m}+\mathrm{1}}\:\frac{{n}−\mathrm{1}}{{m}+\mathrm{2}}\:{I}_{{n}−\mathrm{2},{m}+\mathrm{2}} \\ $$$$=\frac{{n}\left({n}−\mathrm{1}\right)....\left({n}−{p}+\mathrm{1}\right)}{\left({m}+\mathrm{1}\right)\left({m}+\mathrm{2}\right)...\left({m}+{p}\right)}\:{I}_{{n}−{p},{m}+{p}} \\ $$$$=\:\frac{{n}!}{\left({m}+\mathrm{1}\right)\left({m}+\mathrm{2}\right)\:....\left({m}+{n}\right)}\:{I}_{\mathrm{0},{m}+{n}} \:\:{but} \\ $$$${I}_{\mathrm{0},{m}+{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{m}+{n}} {dx}\:=\left[\frac{−\mathrm{1}}{{m}+{n}+\mathrm{1}}\left(\mathrm{1}−{x}\right)^{{m}+{n}+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\:\frac{\mathrm{1}}{{m}+{n}+\mathrm{1}}\:\:{so} \\ $$$${I}_{{n},{m}} =\:\:\:\:\frac{{n}!}{\left({m}+\mathrm{1}\right)\left({m}+\mathrm{2}\right)...\left({m}+{n}+\mathrm{1}\right)} \\ $$$${I}_{{n},{m}} =\:\:\frac{\left({n}!\right)\left({m}!\right)}{\left({m}+{n}+\mathrm{1}\right)!}\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com