Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28072 by abdo imad last updated on 20/Jan/18

let give the function  f(x)=x^4    2π periodic and even  developp   f atfourier series.

$${let}\:{give}\:{the}\:{function}\:\:{f}\left({x}\right)={x}^{\mathrm{4}} \:\:\:\mathrm{2}\pi\:{periodic}\:{and}\:{even} \\ $$$${developp}\:\:\:{f}\:{atfourier}\:{series}. \\ $$

Commented by abdo imad last updated on 26/Jan/18

f(−x)=f(x) and f 2π periodic so  f(x)=(a_0 /2) + Σ_(n=1) ^(+∞)  a_n  cos(nx)  with  a_(n ) = (2/T) ∫_([T])  f(x)cos(nx)dx   (  T=2π)  a_n  = (1/π) ∫_(−π) ^π x^4  cos(nx)dx = (2/π) ∫_0 ^π  x^4  cos(nx)dx let put  A_p = ∫_0 ^π  x^p cos(nx)dx we know that  A_(2p) = (1/n^2 )( 2pπ^(2p−1) (−1)^n   −2p(2p−1)A_(2p−2) ) so  A_4 = (1/n^2 )( 4 π^3 (−1)^n  −12 A_2   ) but  A_(2 ) = (1/n^2 )( 2π(−1)^n  −2A_0   )=((2π)/n^2 )(−1)^n          ( A_0 =0)  A_4  = (1/n^2 )( 4 π^3 (−1)^n  −((24π)/n^2 )(−1)^n ) so  a_4 =(2/π) A_4 = (2/(πn^2 ))( 4π^3 (−1)^n  −((24π)/n^2 )(−1)^n )  = ((8π^2 )/n^2 )(−1)^n    −((48)/n^4 )(−1)^n    let find a_(0 ) ?  a_0 =(2/π) ∫_0 ^π  x^4 dx= (2/π) (1/5) π^5 =((2π^4 )/5)  and (a_0 /2) =(π^4 /5)   and  x^4  = (π^5 /5) +8π^2  Σ_(n=1) ^(+∞)  (((−1)^n )/n^2 )cos(nx) −48 Σ_(n=1) ^(+∞)  (((−1)^n )/n^4 ) cos(nx).

$${f}\left(−{x}\right)={f}\left({x}\right)\:{and}\:{f}\:\mathrm{2}\pi\:{periodic}\:{so} \\ $$$${f}\left({x}\right)=\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:{a}_{{n}} \:{cos}\left({nx}\right)\:\:{with} \\ $$$${a}_{{n}\:} =\:\frac{\mathrm{2}}{{T}}\:\int_{\left[{T}\right]} \:{f}\left({x}\right){cos}\left({nx}\right){dx}\:\:\:\left(\:\:{T}=\mathrm{2}\pi\right) \\ $$$${a}_{{n}} \:=\:\frac{\mathrm{1}}{\pi}\:\int_{−\pi} ^{\pi} {x}^{\mathrm{4}} \:{cos}\left({nx}\right){dx}\:=\:\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:{x}^{\mathrm{4}} \:{cos}\left({nx}\right){dx}\:{let}\:{put} \\ $$$${A}_{{p}} =\:\int_{\mathrm{0}} ^{\pi} \:{x}^{{p}} {cos}\left({nx}\right){dx}\:{we}\:{know}\:{that} \\ $$$${A}_{\mathrm{2}{p}} =\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\:\mathrm{2}{p}\pi^{\mathrm{2}{p}−\mathrm{1}} \left(−\mathrm{1}\right)^{{n}} \:\:−\mathrm{2}{p}\left(\mathrm{2}{p}−\mathrm{1}\right){A}_{\mathrm{2}{p}−\mathrm{2}} \right)\:{so} \\ $$$${A}_{\mathrm{4}} =\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\:\mathrm{4}\:\pi^{\mathrm{3}} \left(−\mathrm{1}\right)^{{n}} \:−\mathrm{12}\:{A}_{\mathrm{2}} \:\:\right)\:{but} \\ $$$${A}_{\mathrm{2}\:} =\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\:\mathrm{2}\pi\left(−\mathrm{1}\right)^{{n}} \:−\mathrm{2}{A}_{\mathrm{0}} \:\:\right)=\frac{\mathrm{2}\pi}{{n}^{\mathrm{2}} }\left(−\mathrm{1}\right)^{{n}} \:\:\:\:\:\:\:\:\:\left(\:{A}_{\mathrm{0}} =\mathrm{0}\right) \\ $$$${A}_{\mathrm{4}} \:=\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\:\mathrm{4}\:\pi^{\mathrm{3}} \left(−\mathrm{1}\right)^{{n}} \:−\frac{\mathrm{24}\pi}{{n}^{\mathrm{2}} }\left(−\mathrm{1}\right)^{{n}} \right)\:{so} \\ $$$${a}_{\mathrm{4}} =\frac{\mathrm{2}}{\pi}\:{A}_{\mathrm{4}} =\:\frac{\mathrm{2}}{\pi{n}^{\mathrm{2}} }\left(\:\mathrm{4}\pi^{\mathrm{3}} \left(−\mathrm{1}\right)^{{n}} \:−\frac{\mathrm{24}\pi}{{n}^{\mathrm{2}} }\left(−\mathrm{1}\right)^{{n}} \right) \\ $$$$=\:\frac{\mathrm{8}\pi^{\mathrm{2}} }{{n}^{\mathrm{2}} }\left(−\mathrm{1}\right)^{{n}} \:\:\:−\frac{\mathrm{48}}{{n}^{\mathrm{4}} }\left(−\mathrm{1}\right)^{{n}} \:\:\:{let}\:{find}\:{a}_{\mathrm{0}\:} ? \\ $$$${a}_{\mathrm{0}} =\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:{x}^{\mathrm{4}} {dx}=\:\frac{\mathrm{2}}{\pi}\:\frac{\mathrm{1}}{\mathrm{5}}\:\pi^{\mathrm{5}} =\frac{\mathrm{2}\pi^{\mathrm{4}} }{\mathrm{5}}\:\:{and}\:\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:=\frac{\pi^{\mathrm{4}} }{\mathrm{5}}\:\:\:{and} \\ $$$${x}^{\mathrm{4}} \:=\:\frac{\pi^{\mathrm{5}} }{\mathrm{5}}\:+\mathrm{8}\pi^{\mathrm{2}} \:\sum_{{n}=\mathrm{1}} ^{+\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} }{cos}\left({nx}\right)\:−\mathrm{48}\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{4}} }\:{cos}\left({nx}\right). \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com