Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 28171 by ajfour last updated on 21/Jan/18

Commented by ajfour last updated on 21/Jan/18

Q.28113  another solution:

$${Q}.\mathrm{28113}\:\:{another}\:{solution}: \\ $$

Answered by ajfour last updated on 21/Jan/18

TR=(((3MR^2 )/2))((a_2 /R))  ⇒ (T/a_2 )=((3M)/2)   (mass inertia of disc)  a_(cm)  of    ((3M)/2) and M =((Mg)/((5M/2)))=((2g)/5)  force on M from centre of mass  frame =Mg−((2Mg)/5)=((3Mg)/5)  spring constant of section of  spring attached to M is         =k(((5M/2)/(3M/2))) =((5k)/3)  under max. stretching of this   section of spring :         (1/2)(((5k)/3))e_2 ^2 =(((3Mg)/5))e_2   ⇒    e_2 =((18Mg)/(25k))  max stretching in full spring       =(5/3)×((18Mg)/(25k)) =((6Mg)/(5k )) .  for minimum friction coefficient  between disc and platform so that  disc doesnot slip,         T_(max) −μ(Mg)=M[((T_(max) R)/((((3MR^2 )/2))))]R  with  T_(max) =((6Mg)/5)   μMg= ((6Mg)/5)−M((2/(3M))×((6Mg)/5))  ⇒  μ=(6/5)−(4/5) =(2/5) .

$${TR}=\left(\frac{\mathrm{3}{MR}^{\mathrm{2}} }{\mathrm{2}}\right)\left(\frac{{a}_{\mathrm{2}} }{{R}}\right) \\ $$$$\Rightarrow\:\frac{{T}}{{a}_{\mathrm{2}} }=\frac{\mathrm{3}{M}}{\mathrm{2}}\:\:\:\left({mass}\:{inertia}\:{of}\:{disc}\right) \\ $$$${a}_{{cm}} \:{of}\:\:\:\:\frac{\mathrm{3}{M}}{\mathrm{2}}\:{and}\:{M}\:=\frac{{Mg}}{\left(\mathrm{5}{M}/\mathrm{2}\right)}=\frac{\mathrm{2}{g}}{\mathrm{5}} \\ $$$${force}\:{on}\:{M}\:{from}\:{centre}\:{of}\:{mass} \\ $$$${frame}\:={Mg}−\frac{\mathrm{2}{Mg}}{\mathrm{5}}=\frac{\mathrm{3}{Mg}}{\mathrm{5}} \\ $$$${spring}\:{constant}\:{of}\:{section}\:{of} \\ $$$${spring}\:{attached}\:{to}\:{M}\:{is}\: \\ $$$$\:\:\:\:\:\:={k}\left(\frac{\mathrm{5}{M}/\mathrm{2}}{\mathrm{3}{M}/\mathrm{2}}\right)\:=\frac{\mathrm{5}{k}}{\mathrm{3}} \\ $$$${under}\:{max}.\:{stretching}\:{of}\:{this}\: \\ $$$${section}\:{of}\:{spring}\:: \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{5}{k}}{\mathrm{3}}\right){e}_{\mathrm{2}} ^{\mathrm{2}} =\left(\frac{\mathrm{3}{Mg}}{\mathrm{5}}\right){e}_{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\:{e}_{\mathrm{2}} =\frac{\mathrm{18}{Mg}}{\mathrm{25}{k}} \\ $$$${max}\:{stretching}\:{in}\:{full}\:{spring} \\ $$$$\:\:\:\:\:=\frac{\mathrm{5}}{\mathrm{3}}×\frac{\mathrm{18}{Mg}}{\mathrm{25}{k}}\:=\frac{\mathrm{6}{Mg}}{\mathrm{5}{k}\:}\:. \\ $$$${for}\:{minimum}\:{friction}\:{coefficient} \\ $$$${between}\:{disc}\:{and}\:{platform}\:{so}\:{that} \\ $$$${disc}\:{doesnot}\:{slip}, \\ $$$$\:\:\:\:\:\:\:{T}_{{max}} −\mu\left({Mg}\right)={M}\left[\frac{{T}_{{max}} {R}}{\left(\frac{\mathrm{3}{MR}^{\mathrm{2}} }{\mathrm{2}}\right)}\right]{R} \\ $$$${with}\:\:{T}_{{max}} =\frac{\mathrm{6}{Mg}}{\mathrm{5}} \\ $$$$\:\mu{Mg}=\:\frac{\mathrm{6}{Mg}}{\mathrm{5}}−{M}\left(\frac{\mathrm{2}}{\mathrm{3}{M}}×\frac{\mathrm{6}{Mg}}{\mathrm{5}}\right) \\ $$$$\Rightarrow\:\:\mu=\frac{\mathrm{6}}{\mathrm{5}}−\frac{\mathrm{4}}{\mathrm{5}}\:=\frac{\mathrm{2}}{\mathrm{5}}\:. \\ $$

Commented by ajfour last updated on 21/Jan/18

Thank you Sir.

Commented by mrW2 last updated on 21/Jan/18

very tricky!

$${very}\:{tricky}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com