Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28242 by abdo imad last updated on 22/Jan/18

find the value of ∫_0 ^∞ e^(−x) lnxdx  .

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {lnxdx}\:\:. \\ $$

Commented by abdo imad last updated on 23/Jan/18

let put I_n = ∫_0 ^n  (1−(x/n))^(n−1) lnxdx  = ∫_(R ) (1−(x/n))^(n−1) χ_(]0,n[) (x) lnxdx  . the sequence of functions  f_n (x)= (1−(x/n))^(n−1) χ_(]0,n[) (x)ln(x)  c.s. to f(x)= e^(−x) lnx on  ]0,+∞[  also we have ∣f_n (x)∣ ≤ e^(−x)    ∀ x∈]0,n[ thoreme of  convergence dominee give lim_(n→+∞) I_(n ) =lim_(n→+∝) ∫_R f_n (x+dx  = ∫_0 ^∞ e^(−x) lnxdx  .the ch. (x/n)=t give  I_n =  n∫_0 ^1  (1−t)^(n−1) (ln(n)+lnt)dt  =n ln(n)∫_0 ^1  (1−t)^(n−1) dt  + ∫_0 ^1 n(1−t)^(n−1) lntdt  =ln(n)[−(1−t)^n ]_0 ^1  +∫_0 ^1 n(1−t)^(n−1) ln(t)dt  =ln(n) + ∫_0 ^1 n(1−t)^(n−1) ln(t)dt    but by parts  ∫_0 ^1 n(1−t)^(n−1) ln(t)dt=([ 1−(1−t)^n )lnt]_0 ^1 −∫_0 ^1  ((1−(1−t)^n )/t)dt  = −∫_0 ^1   ((1−(1−t)^n )/t)dt   (look that lim_(t→0) (1−(1−t)^n )lnt=0)  the ch. 1−t=x give  −∫_0 ^1    ((1−(1−t)^n )/t)dt = −∫_0 ^1   ((1−x^n )/(1−x))dx  =−∫_0 ^1 (1+x+x^2  +...x^(n−1) )dx =−∫_0 ^1 (Σ_(k=0) ^(n−1) x^k )dx  =−Σ_(k=0) ^(n−1)  ∫_0 ^1 x^k dx=−Σ_(k=0) ^(n−1)  (1/(k+1))=−Σ_(k=1) ^n (1/k)=−H_n  so  I_n = ln(n)−H_n = −( H_n   −ln(n))_(n→+∝   ) →−γ   so    ∫_0 ^∞   e^(−x)  ln(x)dx=−γ      (the costant number of Euler)

$${let}\:{put}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}−\mathrm{1}} {lnxdx} \\ $$$$=\:\int_{{R}\:} \left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}−\mathrm{1}} \chi_{\left.\right]\mathrm{0},{n}\left[\right.} \left({x}\right)\:{lnxdx}\:\:.\:{the}\:{sequence}\:{of}\:{functions} \\ $$$${f}_{{n}} \left({x}\right)=\:\left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}−\mathrm{1}} \chi_{\left.\right]\mathrm{0},{n}\left[\right.} \left({x}\right){ln}\left({x}\right)\:\:{c}.{s}.\:{to}\:{f}\left({x}\right)=\:{e}^{−{x}} {lnx}\:{on} \\ $$$$\left.\right]\mathrm{0},+\infty\left[\:\:{also}\:{we}\:{have}\:\mid{f}_{{n}} \left({x}\right)\mid\:\leqslant\:{e}^{−{x}} \:\:\:\forall\:{x}\in\right]\mathrm{0},{n}\left[\:{thoreme}\:{of}\right. \\ $$$${convergence}\:{dominee}\:{give}\:{lim}_{{n}\rightarrow+\infty} {I}_{{n}\:} ={lim}_{{n}\rightarrow+\propto} \int_{{R}} {f}_{{n}} \left({x}+{dx}\right. \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {lnxdx}\:\:.{the}\:{ch}.\:\frac{{x}}{{n}}={t}\:{give} \\ $$$${I}_{{n}} =\:\:{n}\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{1}−{t}\right)^{{n}−\mathrm{1}} \left({ln}\left({n}\right)+{lnt}\right){dt} \\ $$$$={n}\:{ln}\left({n}\right)\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{1}−{t}\right)^{{n}−\mathrm{1}} {dt}\:\:+\:\int_{\mathrm{0}} ^{\mathrm{1}} {n}\left(\mathrm{1}−{t}\right)^{{n}−\mathrm{1}} {lntdt} \\ $$$$={ln}\left({n}\right)\left[−\left(\mathrm{1}−{t}\right)^{{n}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:+\int_{\mathrm{0}} ^{\mathrm{1}} {n}\left(\mathrm{1}−{t}\right)^{{n}−\mathrm{1}} {ln}\left({t}\right){dt} \\ $$$$={ln}\left({n}\right)\:+\:\int_{\mathrm{0}} ^{\mathrm{1}} {n}\left(\mathrm{1}−{t}\right)^{{n}−\mathrm{1}} {ln}\left({t}\right){dt}\:\:\:\:{but}\:{by}\:{parts} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {n}\left(\mathrm{1}−{t}\right)^{{n}−\mathrm{1}} {ln}\left({t}\right){dt}=\left(\left[\:\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} \right){lnt}\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt} \\ $$$$=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt}\:\:\:\left({look}\:{that}\:{lim}_{{t}\rightarrow\mathrm{0}} \left(\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} \right){lnt}=\mathrm{0}\right) \\ $$$${the}\:{ch}.\:\mathrm{1}−{t}={x}\:{give} \\ $$$$−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt}\:=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}−{x}^{{n}} }{\mathrm{1}−{x}}{dx} \\ $$$$=−\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \:+...{x}^{{n}−\mathrm{1}} \right){dx}\:=−\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} {x}^{{k}} \right){dx} \\ $$$$=−\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{k}} {dx}=−\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{{k}+\mathrm{1}}=−\sum_{{k}=\mathrm{1}} ^{{n}} \frac{\mathrm{1}}{{k}}=−{H}_{{n}} \:{so} \\ $$$${I}_{{n}} =\:{ln}\left({n}\right)−{H}_{{n}} =\:−\left(\:{H}_{{n}} \:\:−{ln}\left({n}\right)\right)_{{n}\rightarrow+\propto\:\:\:} \rightarrow−\gamma\: \\ $$$${so}\:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \:{ln}\left({x}\right){dx}=−\gamma\:\:\:\:\:\:\left({the}\:{costant}\:{number}\:{of}\:{Euler}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com