Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 28490 by A1B1C1D1 last updated on 26/Jan/18

lim_(x → a)  (((cos(x) − cos(a))/(x − a)))    Don′t use L′ho^�^�  spital rule.

$$\underset{\mathrm{x}\:\rightarrow\:\mathrm{a}} {\mathrm{lim}}\:\left(\frac{\mathrm{cos}\left(\mathrm{x}\right)\:−\:\mathrm{cos}\left(\mathrm{a}\right)}{\mathrm{x}\:−\:\mathrm{a}}\right) \\ $$$$ \\ $$$$\mathrm{Don}'\mathrm{t}\:\mathrm{use}\:\mathrm{L}'\mathrm{h}\bar {\mathrm{o}spital}\:\mathrm{rule}. \\ $$

Answered by $@ty@m last updated on 27/Jan/18

Let x−a=t  ⇒as x→a, t→0    ∴  lim_(x → a)  (((cos(x) − cos(a))/(x − a)))  =lim_(t→0) ((cos (t+a)−cos a)/t)  =lim_(t→0) ((cos tcos a−sin tsin a−cos a)/t)  =lim_(t→0) (((cos t−1)cos a−sin tsin a)/t)  =lim_(t→0) (((cos t−1)cos a)/t)−lim_(t→0) ((sin tsin a)/t)  =lim_(t→0) ((−2sin^2 (t/2)cos a)/t^2 )×t− sin a   lim_(t→0) ((sin t)/t)  =0−sin a  =−sin a

$${Let}\:{x}−{a}={t} \\ $$$$\Rightarrow{as}\:{x}\rightarrow{a},\:{t}\rightarrow\mathrm{0} \\ $$$$\:\:\therefore\:\:\underset{\mathrm{x}\:\rightarrow\:\mathrm{a}} {\mathrm{lim}}\:\left(\frac{\mathrm{cos}\left(\mathrm{x}\right)\:−\:\mathrm{cos}\left(\mathrm{a}\right)}{\mathrm{x}\:−\:\mathrm{a}}\right) \\ $$$$=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cos}\:\left({t}+{a}\right)−\mathrm{cos}\:{a}}{{t}} \\ $$$$=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cos}\:{t}\mathrm{cos}\:{a}−\mathrm{sin}\:{t}\mathrm{sin}\:{a}−\mathrm{cos}\:{a}}{{t}} \\ $$$$=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{cos}\:{t}−\mathrm{1}\right)\mathrm{cos}\:{a}−\mathrm{sin}\:{t}\mathrm{sin}\:{a}}{{t}} \\ $$$$=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{cos}\:{t}−\mathrm{1}\right)\mathrm{cos}\:{a}}{{t}}−\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:{t}\mathrm{sin}\:{a}}{{t}} \\ $$$$=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{2sin}\:^{\mathrm{2}} \frac{{t}}{\mathrm{2}}\mathrm{cos}\:{a}}{{t}^{\mathrm{2}} }×{t}−\:\mathrm{sin}\:{a}\:\:\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:{t}}{{t}} \\ $$$$=\mathrm{0}−\mathrm{sin}\:{a} \\ $$$$=−\mathrm{sin}\:{a} \\ $$

Commented by A1B1C1D1 last updated on 27/Jan/18

Thanks

$$\mathrm{Thanks} \\ $$

Answered by $@ty@m last updated on 27/Jan/18

Alternative:  lim_(x→a) ((2sin ((x+a)/2)sin ((x−a)/2))/(x−a))  lim_(x→a) ((sin ((x+a)/2)sin ((a−x)/2))/((x−a)/2))  lim_(x→a) sin ((x+a)/2)×(−1×lim_(x→a) ((sin ((x−a)/2))/((x−a)/2)))  sin ((a+a)/2)×(−1)×1  =−sin a

$${Alternative}: \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{\mathrm{2sin}\:\frac{{x}+{a}}{\mathrm{2}}\mathrm{sin}\:\frac{{x}−{a}}{\mathrm{2}}}{{x}−{a}} \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{\mathrm{sin}\:\frac{{x}+{a}}{\mathrm{2}}\mathrm{sin}\:\frac{{a}−{x}}{\mathrm{2}}}{\frac{{x}−{a}}{\mathrm{2}}} \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}sin}\:\frac{{x}+{a}}{\mathrm{2}}×\left(−\mathrm{1}×\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{\mathrm{sin}\:\frac{{x}−{a}}{\mathrm{2}}}{\frac{{x}−{a}}{\mathrm{2}}}\right) \\ $$$$\mathrm{sin}\:\frac{{a}+{a}}{\mathrm{2}}×\left(−\mathrm{1}\right)×\mathrm{1} \\ $$$$=−\mathrm{sin}\:{a} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com