Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28611 by abdo imad last updated on 27/Jan/18

let give θ∈]0,π[  prove that  ∫_0 ^1    (dt/(e^(−iθ) −t))= Σ_(n=1) ^(+∞)   (e^(inθ) /n)  .

$$\left.{let}\:{give}\:\theta\in\right]\mathrm{0},\pi\left[\:\:{prove}\:{that}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{{e}^{−{i}\theta} −{t}}=\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:\:\frac{{e}^{{in}\theta} }{{n}}\:\:.\right. \\ $$

Commented by abdo imad last updated on 28/Jan/18

let put  I= ∫_0 ^1   (dt/(e^(−iθ) −t)) ⇒ I= ∫_0 ^1   (e^(iθ) /(1−e^(iθ) t)) but we have  ∣e^(iθ) t∣≤1 I= ∫_0 ^1  e^(iθ)  ( Σ_(n=0) ^(+∞)  e^(inθ)  t^n )dt  = Σ_(n=0) ^(+∞)  e^(i(n+1)θ)  ∫_0 ^1  t^n dt  = Σ_(n=0) ^(+∞)   (e^(i(n+1)θ) /(n+1))= Σ_(n=1) ^(+∞)     (e^(inθ) /n) .

$${let}\:{put}\:\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{{e}^{−{i}\theta} −{t}}\:\Rightarrow\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{e}^{{i}\theta} }{\mathrm{1}−{e}^{{i}\theta} {t}}\:{but}\:{we}\:{have} \\ $$$$\mid{e}^{{i}\theta} {t}\mid\leqslant\mathrm{1}\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{{i}\theta} \:\left(\:\sum_{{n}=\mathrm{0}} ^{+\infty} \:{e}^{{in}\theta} \:{t}^{{n}} \right){dt} \\ $$$$=\:\sum_{{n}=\mathrm{0}} ^{+\infty} \:{e}^{{i}\left({n}+\mathrm{1}\right)\theta} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{n}} {dt} \\ $$$$=\:\sum_{{n}=\mathrm{0}} ^{+\infty} \:\:\frac{{e}^{{i}\left({n}+\mathrm{1}\right)\theta} }{{n}+\mathrm{1}}=\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:\:\:\:\frac{{e}^{{in}\theta} }{{n}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com