Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28694 by abdo imad last updated on 29/Jan/18

find the value of ∫_0 ^∞  e^(−tx^2 ) cosx dx  with t>0 .

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{tx}^{\mathrm{2}} } {cosx}\:{dx}\:\:{with}\:{t}>\mathrm{0}\:. \\ $$

Commented byabdo imad last updated on 29/Jan/18

let put  I= ∫_0 ^∞   e^(−tx^2 )  cosx dx  I= (1/2) ∫_(−∞) ^(+∞)   e^(−tx^2 +ix) dx because  ∫_(−∞) ^(+∞)  e^(−tx^2 ) sinxdx=0 but  ∫_(−∞) ^(+∞)   e^(−(((√t)x)^2  −2(√t)x(i/(2(√t)))  +((i/(2(√t))))^2  −((i/(2(√t))))^2 )) dx  = ∫_(− ∞) ^(+∞)   e^(−((√t)x −(i/(2(√t))))^2 −(1/(4t))) dx        (ch.(√t)x −(i/(2(√t)))=u)  = e^(−(1/(4t)))   ∫_(−∞) ^(+∞)    e^(−u^2 )   (du/(√t))=((√π)/(√t)) e^(−(1/(4t)))     (  ∫_(−∞) ^(+∞)  e^(−u^2 ) du=(√π))so  I= ((√π)/(2(√t)))  e^(−(1/(4t)))  .

$${let}\:{put}\:\:{I}=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{tx}^{\mathrm{2}} } \:{cosx}\:{dx} \\ $$ $${I}=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{tx}^{\mathrm{2}} +{ix}} {dx}\:{because}\:\:\int_{−\infty} ^{+\infty} \:{e}^{−{tx}^{\mathrm{2}} } {sinxdx}=\mathrm{0}\:{but} \\ $$ $$\int_{−\infty} ^{+\infty} \:\:{e}^{−\left(\left(\sqrt{{t}}{x}\right)^{\mathrm{2}} \:−\mathrm{2}\sqrt{{t}}{x}\frac{{i}}{\mathrm{2}\sqrt{{t}}}\:\:+\left(\frac{{i}}{\mathrm{2}\sqrt{{t}}}\right)^{\mathrm{2}} \:−\left(\frac{{i}}{\mathrm{2}\sqrt{{t}}}\right)^{\mathrm{2}} \right)} {dx} \\ $$ $$=\:\int_{−\:\infty} ^{+\infty} \:\:{e}^{−\left(\sqrt{{t}}{x}\:−\frac{{i}}{\mathrm{2}\sqrt{{t}}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}{t}}} {dx}\:\:\:\:\:\:\:\:\left({ch}.\sqrt{{t}}{x}\:−\frac{{i}}{\mathrm{2}\sqrt{{t}}}={u}\right) \\ $$ $$=\:{e}^{−\frac{\mathrm{1}}{\mathrm{4}{t}}} \:\:\int_{−\infty} ^{+\infty} \:\:\:{e}^{−{u}^{\mathrm{2}} } \:\:\frac{{du}}{\sqrt{{t}}}=\frac{\sqrt{\pi}}{\sqrt{{t}}}\:{e}^{−\frac{\mathrm{1}}{\mathrm{4}{t}}} \:\:\:\:\left(\:\:\int_{−\infty} ^{+\infty} \:{e}^{−{u}^{\mathrm{2}} } {du}=\sqrt{\pi}\right){so} \\ $$ $${I}=\:\frac{\sqrt{\pi}}{\mathrm{2}\sqrt{{t}}}\:\:{e}^{−\frac{\mathrm{1}}{\mathrm{4}{t}}} \:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com