Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 28835 by ajfour last updated on 30/Jan/18

Commented by ajfour last updated on 30/Jan/18

One sphere over another, the  two confined between ground  and two inclined walls.  Find contact force at each contact  point : (Assume surfaces frictionless).  N_G     :(Normal reaction from ground)  N_S   : Normal force between spheres  N_L   :   Normal from left incline  N_R    :   from right incline .

$${One}\:{sphere}\:{over}\:{another},\:{the} \\ $$$${two}\:{confined}\:{between}\:{ground} \\ $$$${and}\:{two}\:{inclined}\:{walls}. \\ $$$${Find}\:{contact}\:{force}\:{at}\:{each}\:{contact} \\ $$$${point}\::\:\left({Assume}\:{surfaces}\:{frictionless}\right). \\ $$$${N}_{{G}} \:\:\:\::\left({Normal}\:{reaction}\:{from}\:{ground}\right) \\ $$$${N}_{{S}} \:\::\:{Normal}\:{force}\:{between}\:{spheres} \\ $$$${N}_{{L}} \:\::\:\:\:{Normal}\:{from}\:{left}\:{incline} \\ $$$${N}_{{R}} \:\:\::\:\:\:{from}\:{right}\:{incline}\:. \\ $$

Commented by ajfour last updated on 31/Jan/18

Commented by ajfour last updated on 31/Jan/18

rsin α+(R+r)cos θ+Rsin α                  =a+y_1 cot α+y_2 cot α    ...(i)  y_1 =r(1−cos α)  r+(R+r)sin θ−Rcos α=y_2   (y_1 +y_2 )=2r+(R+r)sin θ                             −(R+r)cos α  substituting in (i):  ⇒ (r+R)sin α+(R+r)cos θ= a+  2rcot α+[(((R+r)cos α)/(sin α))]sin θ          −(((R+r)cos^2 α)/(sin α))    or   (((R+r))/(sin α))[sin αcos θ−cos αsin θ]          = a+2rcot α−(((R+r))/(sin α))  sin (α−θ)=((asin α)/(R+r))+((2rcos α)/((R+r)))−1   θ= α−sin^(−1) [((asin α)/(R+r))+((2rcos α)/(R+r))−1]  Now considering torque about  contact point of bigger sphere  with right wall:  N_S R sin (θ+90°−α)=MgRsin α  ⇒  N_S =((Mgsin α)/(cos (α−θ)))  and  N_S  cos θ = N_R  sin α  so   N_L =N_R = ((Mgcos θ)/(cos (α−θ)))   considering torque on smaller  sphere about contact point with     left wall:   N_S  rsin (α−θ)=(N_G −mg)rsin α  ⇒ N_G =mg+((N_S  sin (α+θ−90°))/(sin α))  N_G =mg−((Mgsin α)/(cos (α−θ)))×((cos (α+θ))/(sin α))  ⇒  N_G =mg−((Mgcos (θ+α))/(cos (θ−α))) .

$${r}\mathrm{sin}\:\alpha+\left({R}+{r}\right)\mathrm{cos}\:\theta+{R}\mathrm{sin}\:\alpha \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={a}+{y}_{\mathrm{1}} \mathrm{cot}\:\alpha+{y}_{\mathrm{2}} \mathrm{cot}\:\alpha\:\:\:\:...\left({i}\right) \\ $$$${y}_{\mathrm{1}} ={r}\left(\mathrm{1}−\mathrm{cos}\:\alpha\right) \\ $$$${r}+\left({R}+{r}\right)\mathrm{sin}\:\theta−{R}\mathrm{cos}\:\alpha={y}_{\mathrm{2}} \\ $$$$\left({y}_{\mathrm{1}} +{y}_{\mathrm{2}} \right)=\mathrm{2}{r}+\left({R}+{r}\right)\mathrm{sin}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\left({R}+{r}\right)\mathrm{cos}\:\alpha \\ $$$${substituting}\:{in}\:\left({i}\right): \\ $$$$\Rightarrow\:\left({r}+{R}\right)\mathrm{sin}\:\alpha+\left({R}+{r}\right)\mathrm{cos}\:\theta=\:{a}+ \\ $$$$\mathrm{2}{r}\mathrm{cot}\:\alpha+\left[\frac{\left({R}+{r}\right)\mathrm{cos}\:\alpha}{\mathrm{sin}\:\alpha}\right]\mathrm{sin}\:\theta \\ $$$$\:\:\:\:\:\:\:\:−\frac{\left({R}+{r}\right)\mathrm{cos}\:^{\mathrm{2}} \alpha}{\mathrm{sin}\:\alpha} \\ $$$$ \\ $$$${or}\:\:\:\frac{\left({R}+{r}\right)}{\mathrm{sin}\:\alpha}\left[\mathrm{sin}\:\alpha\mathrm{cos}\:\theta−\mathrm{cos}\:\alpha\mathrm{sin}\:\theta\right] \\ $$$$\:\:\:\:\:\:\:\:=\:{a}+\mathrm{2}{r}\mathrm{cot}\:\alpha−\frac{\left({R}+{r}\right)}{\mathrm{sin}\:\alpha} \\ $$$$\mathrm{sin}\:\left(\alpha−\theta\right)=\frac{{a}\mathrm{sin}\:\alpha}{{R}+{r}}+\frac{\mathrm{2}{r}\mathrm{cos}\:\alpha}{\left({R}+{r}\right)}−\mathrm{1} \\ $$$$\:\theta=\:\alpha−\mathrm{sin}^{−\mathrm{1}} \left[\frac{{a}\mathrm{sin}\:\alpha}{{R}+{r}}+\frac{\mathrm{2}{r}\mathrm{cos}\:\alpha}{{R}+{r}}−\mathrm{1}\right] \\ $$$${Now}\:{considering}\:{torque}\:{about} \\ $$$${contact}\:{point}\:{of}\:{bigger}\:{sphere} \\ $$$${with}\:{right}\:{wall}: \\ $$$${N}_{{S}} {R}\:\mathrm{sin}\:\left(\theta+\mathrm{90}°−\alpha\right)={MgR}\mathrm{sin}\:\alpha \\ $$$$\Rightarrow\:\:{N}_{{S}} =\frac{{Mg}\mathrm{sin}\:\alpha}{\mathrm{cos}\:\left(\alpha−\theta\right)} \\ $$$${and}\:\:{N}_{{S}} \:\mathrm{cos}\:\theta\:=\:{N}_{{R}} \:\mathrm{sin}\:\alpha \\ $$$${so}\:\:\:{N}_{{L}} ={N}_{{R}} =\:\frac{{Mg}\mathrm{cos}\:\theta}{\mathrm{cos}\:\left(\alpha−\theta\right)}\: \\ $$$${considering}\:{torque}\:{on}\:{smaller} \\ $$$${sphere}\:{about}\:{contact}\:{point}\:{with}\:\:\: \\ $$$${left}\:{wall}: \\ $$$$\:{N}_{{S}} \:{r}\mathrm{sin}\:\left(\alpha−\theta\right)=\left({N}_{{G}} −{mg}\right){r}\mathrm{sin}\:\alpha \\ $$$$\Rightarrow\:{N}_{{G}} ={mg}+\frac{{N}_{{S}} \:\mathrm{sin}\:\left(\alpha+\theta−\mathrm{90}°\right)}{\mathrm{sin}\:\alpha} \\ $$$${N}_{{G}} ={mg}−\frac{{Mg}\mathrm{sin}\:\alpha}{\mathrm{cos}\:\left(\alpha−\theta\right)}×\frac{\mathrm{cos}\:\left(\alpha+\theta\right)}{\mathrm{sin}\:\alpha} \\ $$$$\Rightarrow\:\:{N}_{{G}} ={mg}−\frac{{Mg}\mathrm{cos}\:\left(\theta+\alpha\right)}{\mathrm{cos}\:\left(\theta−\alpha\right)}\:. \\ $$

Commented by mrW2 last updated on 31/Jan/18

������

Answered by mrW2 last updated on 30/Jan/18

Commented by mrW2 last updated on 31/Jan/18

2γ+α=180  ⇒γ=90−(α/2)  β=90−α    [r+(r+R)sin θ](1/(tan α))+a=(r/(tan γ))+(r+R)cos θ+(R/(cos β))  r+(r+R)sin θ+a tan α=r tan (α/2) tan α+(r+R)tan α cos θ+(R/(cos α))  sin α cos θ−cos α sin θ=((cos α)/(r+R))[a tan α+r(1− tan (α/2) tan α)−(R/(cos α))]  sin (α−θ)=((cos α)/(r+R))[a tan α+r(1− tan (α/2) tan α)−(R/(cos α))]  α−θ=sin^(−1) {(1/(r+R))[a sin α+r(cos α− tan (α/2) sin α)−R]}  ⇒θ=α−sin^(−1) {(1/(r+R))[a sin α+r(cos α− tan (α/2) sin α)−R]}  ⇒θ=α−sin^(−1) {(1/(r+R))[a sin α+r(cos α− ((1−cos α)/(sin α)) sin α)−R]}  ⇒θ=α−sin^(−1) [((a sin α+2r cos α)/(r+R))−1]    N_R cos β=N_S cos θ  ⇒N_S =((cos β)/(cos θ))N_R =((sin α)/(cos θ))N_R   N_R sin β+N_S sin θ=Mg  N_R (cos α+((sin α)/(cos θ))sin θ)=Mg  ⇒N_R =((Mg)/(cos α+sin α tan θ))=((cos θ)/(cos (α−θ)))Mg  ⇒N_S =((sin α)/(cos (α−θ)))Mg    N_L sin α=N_S cos θ  ⇒N_L =((cos θ)/(sin α))×((sin α)/(cos (α−θ)))Mg=((cos θ)/(cos (α−θ)))Mg=N_R   N_G +N_L cos α=mg+N_S sin θ  ⇒N_G =mg+((sin α sin θ)/(cos (α−θ)))Mg−((cos α cos θ)/(cos (α−θ)))Mg  ⇒N_G =mg−((cos (α+θ))/(cos (α−θ)))Mg

$$\mathrm{2}\gamma+\alpha=\mathrm{180} \\ $$$$\Rightarrow\gamma=\mathrm{90}−\frac{\alpha}{\mathrm{2}} \\ $$$$\beta=\mathrm{90}−\alpha \\ $$$$ \\ $$$$\left[{r}+\left({r}+{R}\right)\mathrm{sin}\:\theta\right]\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}+{a}=\frac{{r}}{\mathrm{tan}\:\gamma}+\left({r}+{R}\right)\mathrm{cos}\:\theta+\frac{{R}}{\mathrm{cos}\:\beta} \\ $$$${r}+\left({r}+{R}\right)\mathrm{sin}\:\theta+{a}\:\mathrm{tan}\:\alpha={r}\:\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\:\mathrm{tan}\:\alpha+\left({r}+{R}\right)\mathrm{tan}\:\alpha\:\mathrm{cos}\:\theta+\frac{{R}}{\mathrm{cos}\:\alpha} \\ $$$$\mathrm{sin}\:\alpha\:\mathrm{cos}\:\theta−\mathrm{cos}\:\alpha\:\mathrm{sin}\:\theta=\frac{\mathrm{cos}\:\alpha}{{r}+{R}}\left[{a}\:\mathrm{tan}\:\alpha+{r}\left(\mathrm{1}−\:\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\:\mathrm{tan}\:\alpha\right)−\frac{{R}}{\mathrm{cos}\:\alpha}\right] \\ $$$$\mathrm{sin}\:\left(\alpha−\theta\right)=\frac{\mathrm{cos}\:\alpha}{{r}+{R}}\left[{a}\:\mathrm{tan}\:\alpha+{r}\left(\mathrm{1}−\:\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\:\mathrm{tan}\:\alpha\right)−\frac{{R}}{\mathrm{cos}\:\alpha}\right] \\ $$$$\alpha−\theta=\mathrm{sin}^{−\mathrm{1}} \left\{\frac{\mathrm{1}}{{r}+{R}}\left[{a}\:\mathrm{sin}\:\alpha+{r}\left(\mathrm{cos}\:\alpha−\:\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\:\mathrm{sin}\:\alpha\right)−{R}\right]\right\} \\ $$$$\Rightarrow\theta=\alpha−\mathrm{sin}^{−\mathrm{1}} \left\{\frac{\mathrm{1}}{{r}+{R}}\left[{a}\:\mathrm{sin}\:\alpha+{r}\left(\mathrm{cos}\:\alpha−\:\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\:\mathrm{sin}\:\alpha\right)−{R}\right]\right\} \\ $$$$\Rightarrow\theta=\alpha−\mathrm{sin}^{−\mathrm{1}} \left\{\frac{\mathrm{1}}{{r}+{R}}\left[{a}\:\mathrm{sin}\:\alpha+{r}\left(\mathrm{cos}\:\alpha−\:\frac{\mathrm{1}−\mathrm{cos}\:\alpha}{\mathrm{sin}\:\alpha}\:\mathrm{sin}\:\alpha\right)−{R}\right]\right\} \\ $$$$\Rightarrow\theta=\alpha−\mathrm{sin}^{−\mathrm{1}} \left[\frac{{a}\:\mathrm{sin}\:\alpha+\mathrm{2}{r}\:\mathrm{cos}\:\alpha}{{r}+{R}}−\mathrm{1}\right] \\ $$$$ \\ $$$${N}_{{R}} \mathrm{cos}\:\beta={N}_{{S}} \mathrm{cos}\:\theta \\ $$$$\Rightarrow{N}_{{S}} =\frac{\mathrm{cos}\:\beta}{\mathrm{cos}\:\theta}{N}_{{R}} =\frac{\mathrm{sin}\:\alpha}{\mathrm{cos}\:\theta}{N}_{{R}} \\ $$$${N}_{{R}} \mathrm{sin}\:\beta+{N}_{{S}} \mathrm{sin}\:\theta={Mg} \\ $$$${N}_{{R}} \left(\mathrm{cos}\:\alpha+\frac{\mathrm{sin}\:\alpha}{\mathrm{cos}\:\theta}\mathrm{sin}\:\theta\right)={Mg} \\ $$$$\Rightarrow{N}_{{R}} =\frac{{Mg}}{\mathrm{cos}\:\alpha+\mathrm{sin}\:\alpha\:\mathrm{tan}\:\theta}=\frac{\mathrm{cos}\:\theta}{\mathrm{cos}\:\left(\alpha−\theta\right)}{Mg} \\ $$$$\Rightarrow{N}_{{S}} =\frac{\mathrm{sin}\:\alpha}{\mathrm{cos}\:\left(\alpha−\theta\right)}{Mg} \\ $$$$ \\ $$$${N}_{{L}} \mathrm{sin}\:\alpha={N}_{{S}} \mathrm{cos}\:\theta \\ $$$$\Rightarrow{N}_{{L}} =\frac{\mathrm{cos}\:\theta}{\mathrm{sin}\:\alpha}×\frac{\mathrm{sin}\:\alpha}{\mathrm{cos}\:\left(\alpha−\theta\right)}{Mg}=\frac{\mathrm{cos}\:\theta}{\mathrm{cos}\:\left(\alpha−\theta\right)}{Mg}={N}_{{R}} \\ $$$${N}_{{G}} +{N}_{{L}} \mathrm{cos}\:\alpha={mg}+{N}_{{S}} \mathrm{sin}\:\theta \\ $$$$\Rightarrow{N}_{{G}} ={mg}+\frac{\mathrm{sin}\:\alpha\:\mathrm{sin}\:\theta}{\mathrm{cos}\:\left(\alpha−\theta\right)}{Mg}−\frac{\mathrm{cos}\:\alpha\:\mathrm{cos}\:\theta}{\mathrm{cos}\:\left(\alpha−\theta\right)}{Mg} \\ $$$$\Rightarrow{N}_{{G}} ={mg}−\frac{\mathrm{cos}\:\left(\alpha+\theta\right)}{\mathrm{cos}\:\left(\alpha−\theta\right)}{Mg} \\ $$

Commented by mrW2 last updated on 31/Jan/18

It can also be solved like this:  ΣF_x =0:  N_L cos β−N_R cos β=0  ⇒N_L =N_R   ΣM_A =0:  Mg(R+r)cos θ−N_R cos β (R+r)sin θ−N_R sin β (R+r)cos θ=0  ⇒Mgcos θ−N_R cos β sin θ−N_R sin β cos θ=0  ⇒Mgcos θ−N_R sin α sin θ−N_R cos α cos θ=0  ⇒Mgcos θ−N_R cos (α−θ)=0  ⇒N_R =((cos θ)/(cos (α−θ)))Mg=N_L   ΣF_y =0:  Mg+mg−N_R sin β−N_L sin β−N_G =0  ⇒N_G =Mg+mg−2sin β((cos θMg)/(cos (α−θ)))  ⇒N_G =mg+[1−((2cos αcos θ)/(cos (α−θ)))]Mg  ⇒N_G =mg−((cos (α+θ))/(cos (α−θ)))Mg  ΣF_(x(B)) =0:  N_S cos θ−N_R cos β=0  ⇒N_S =((cos β)/(cos θ))×((cos θ)/(cos (α−θ)))Mg  ⇒N_S =((sin α)/(cos (α−θ)))Mg

$${It}\:{can}\:{also}\:{be}\:{solved}\:{like}\:{this}: \\ $$$$\Sigma{F}_{{x}} =\mathrm{0}: \\ $$$${N}_{{L}} \mathrm{cos}\:\beta−{N}_{{R}} \mathrm{cos}\:\beta=\mathrm{0} \\ $$$$\Rightarrow{N}_{{L}} ={N}_{{R}} \\ $$$$\Sigma{M}_{{A}} =\mathrm{0}: \\ $$$${Mg}\left({R}+{r}\right)\mathrm{cos}\:\theta−{N}_{{R}} \mathrm{cos}\:\beta\:\left({R}+{r}\right)\mathrm{sin}\:\theta−{N}_{{R}} \mathrm{sin}\:\beta\:\left({R}+{r}\right)\mathrm{cos}\:\theta=\mathrm{0} \\ $$$$\Rightarrow{Mg}\mathrm{cos}\:\theta−{N}_{{R}} \mathrm{cos}\:\beta\:\mathrm{sin}\:\theta−{N}_{{R}} \mathrm{sin}\:\beta\:\mathrm{cos}\:\theta=\mathrm{0} \\ $$$$\Rightarrow{Mg}\mathrm{cos}\:\theta−{N}_{{R}} \mathrm{sin}\:\alpha\:\mathrm{sin}\:\theta−{N}_{{R}} \mathrm{cos}\:\alpha\:\mathrm{cos}\:\theta=\mathrm{0} \\ $$$$\Rightarrow{Mg}\mathrm{cos}\:\theta−{N}_{{R}} \mathrm{cos}\:\left(\alpha−\theta\right)=\mathrm{0} \\ $$$$\Rightarrow{N}_{{R}} =\frac{\mathrm{cos}\:\theta}{\mathrm{cos}\:\left(\alpha−\theta\right)}{Mg}={N}_{{L}} \\ $$$$\Sigma{F}_{{y}} =\mathrm{0}: \\ $$$${Mg}+{mg}−{N}_{{R}} \mathrm{sin}\:\beta−{N}_{{L}} \mathrm{sin}\:\beta−{N}_{{G}} =\mathrm{0} \\ $$$$\Rightarrow{N}_{{G}} ={Mg}+{mg}−\mathrm{2sin}\:\beta\frac{\mathrm{cos}\:\theta{Mg}}{\mathrm{cos}\:\left(\alpha−\theta\right)} \\ $$$$\Rightarrow{N}_{{G}} ={mg}+\left[\mathrm{1}−\frac{\mathrm{2cos}\:\alpha\mathrm{cos}\:\theta}{\mathrm{cos}\:\left(\alpha−\theta\right)}\right]{Mg} \\ $$$$\Rightarrow{N}_{{G}} ={mg}−\frac{\mathrm{cos}\:\left(\alpha+\theta\right)}{\mathrm{cos}\:\left(\alpha−\theta\right)}{Mg} \\ $$$$\Sigma{F}_{{x}\left({B}\right)} =\mathrm{0}: \\ $$$${N}_{{S}} \mathrm{cos}\:\theta−{N}_{{R}} \mathrm{cos}\:\beta=\mathrm{0} \\ $$$$\Rightarrow{N}_{{S}} =\frac{\mathrm{cos}\:\beta}{\mathrm{cos}\:\theta}×\frac{\mathrm{cos}\:\theta}{\mathrm{cos}\:\left(\alpha−\theta\right)}{Mg} \\ $$$$\Rightarrow{N}_{{S}} =\frac{\mathrm{sin}\:\alpha}{\mathrm{cos}\:\left(\alpha−\theta\right)}{Mg} \\ $$

Commented by ajfour last updated on 31/Jan/18

THANK you Sir.

$$\mathbb{THANK}\:{you}\:\boldsymbol{{Sir}}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com