Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 29273 by ajfour last updated on 06/Feb/18

Commented by ajfour last updated on 06/Feb/18

Ice cube melts due to friction,  as it slides down a rough incline.  (dm/dx) =−(f/(s△T_0 ))    (f is force of friction)  s the specific heat of ice and  △T_0   =constant (temp. difference)  If work done by friction goes as  heat to the ice, then  Find velocity as a function of  x, the distance along incline  that it slides.

$${Ice}\:{cube}\:{melts}\:{due}\:{to}\:{friction}, \\ $$$${as}\:{it}\:{slides}\:{down}\:{a}\:{rough}\:{incline}. \\ $$$$\frac{{dm}}{{dx}}\:=−\frac{{f}}{{s}\bigtriangleup{T}_{\mathrm{0}} }\:\:\:\:\left({f}\:{is}\:{force}\:{of}\:{friction}\right) \\ $$$${s}\:{the}\:{specific}\:{heat}\:{of}\:{ice}\:{and} \\ $$$$\bigtriangleup{T}_{\mathrm{0}} \:\:={constant}\:\left({temp}.\:{difference}\right) \\ $$$${If}\:{work}\:{done}\:{by}\:{friction}\:{goes}\:{as} \\ $$$${heat}\:{to}\:{the}\:{ice},\:{then} \\ $$$${Find}\:{velocity}\:{as}\:{a}\:{function}\:{of} \\ $$$${x},\:{the}\:{distance}\:{along}\:{incline} \\ $$$${that}\:{it}\:{slides}. \\ $$$$ \\ $$

Commented by mrW2 last updated on 07/Feb/18

f=μmg sin θ  ⇒(dm/dx) =−(f/(sΔT_0 ))=−((μgsin θ)/(s△T_0 )) m=−km  ⇒∫_m_0  ^m (dm/m) =−k∫_0 ^x x  ⇒ln (m/m_0 ) =−kx  ⇒m=m_0 e^(−kx)     F=mg(cos θ−μ sin θ)=m(dv/dt)+v(dm/dt)  mg′=m(dv/dt)+v(dm/dt)  mg′=m(dv/dt)×(dx/dx)+v(dm/dt)×(dx/dx)  mg′=mv(dv/dx)+v^2 (dm/dx)  mg′=mv(dv/dx)−v^2 km  v(dv/dx)=g^′ +kv^2   ((vdv)/(((g′)/k)+v^2 ))=kdx  (dv^2 /(((g′)/k)+v^2 ))=2kdx  ln ((((g′)/k)+v^2 )/((g′)/k))=2kx  ln (1+(k/(g′))v^2 )=2kx  ⇒v=(√(((g′)/k)(e^(2kx) −1)))    (dx/dt)=(√(((g′)/k)(e^(2kx) −1)))  ⇒(dx/(√(e^(2kx) −1)))=(√((g′)/k)) dt  ⇒∫_0 ^( x) ((d(2kx))/(√(e^(2kx) −1)))=2(√(kg′)) ∫_0 ^( t) dt  ⇒2 tan^(−1) (√(e^(2kx) −1))=2(√(kg′)) t  ⇒tan^(−1) (√(e^(2kx) −1))=(√(kg′)) t  ⇒(√(e^(2kx) −1))=tan ((√(kg′)) t)  ⇒e^(2kx) =1+tan^2  ((√(kg′)) t)=(1/(cos^2  ((√(kg′)) t)))  ⇒x=(1/(2k))ln [1+tan^2  ((√(kg′)) t)]=(1/k)ln (1/(cos ((√(kg′)) t)))  ⇒v=(√(k/(g′)))×tan ((√(kg′)) t)  ⇒m=m_0 e^(−kx) =(m_0 /(√e^(2kx) ))=m_0 cos ((√(kg′)) t)  m=0⇒(√(kg′)) t=(π/2)⇒t=(π/(2(√(kg′))))  ⇒0≤t≤(π/(2(√(kg′))))  =======END==========  e^(2kx) −1=2kx+(((2kx)^2 )/2)+(((2kx)^3 )/6)+...  ⇒v=(√(((g′)/k)(e^(2kx) −1))) =(√(2g′x(1+kx+(2/3)k^2 x^2 +...)))>(√(2g′x))    Comparation with the case without  mass loss:  a=g(cos θ−μ sin θ)=g′  ⇒v=(√(2g′x))    ⇒A melting ice block moves faster  than a normal ice block.

$${f}=\mu{mg}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\frac{{dm}}{{dx}}\:=−\frac{{f}}{{s}\Delta{T}_{\mathrm{0}} }=−\frac{\mu{g}\mathrm{sin}\:\theta}{{s}\bigtriangleup{T}_{\mathrm{0}} }\:{m}=−{km} \\ $$$$\Rightarrow\int_{{m}_{\mathrm{0}} } ^{{m}} \frac{{dm}}{{m}}\:=−{k}\int_{\mathrm{0}} ^{{x}} {x} \\ $$$$\Rightarrow\mathrm{ln}\:\frac{{m}}{{m}_{\mathrm{0}} }\:=−{kx} \\ $$$$\Rightarrow{m}={m}_{\mathrm{0}} {e}^{−{kx}} \\ $$$$ \\ $$$${F}={mg}\left(\mathrm{cos}\:\theta−\mu\:\mathrm{sin}\:\theta\right)={m}\frac{{dv}}{{dt}}+{v}\frac{{dm}}{{dt}} \\ $$$${mg}'={m}\frac{{dv}}{{dt}}+{v}\frac{{dm}}{{dt}} \\ $$$${mg}'={m}\frac{{dv}}{{dt}}×\frac{{dx}}{{dx}}+{v}\frac{{dm}}{{dt}}×\frac{{dx}}{{dx}} \\ $$$${mg}'={mv}\frac{{dv}}{{dx}}+{v}^{\mathrm{2}} \frac{{dm}}{{dx}} \\ $$$${mg}'={mv}\frac{{dv}}{{dx}}−{v}^{\mathrm{2}} {km} \\ $$$${v}\frac{{dv}}{{dx}}={g}^{'} +{kv}^{\mathrm{2}} \\ $$$$\frac{{vdv}}{\frac{{g}'}{{k}}+{v}^{\mathrm{2}} }={kdx} \\ $$$$\frac{{dv}^{\mathrm{2}} }{\frac{{g}'}{{k}}+{v}^{\mathrm{2}} }=\mathrm{2}{kdx} \\ $$$$\mathrm{ln}\:\frac{\frac{{g}'}{{k}}+{v}^{\mathrm{2}} }{\frac{{g}'}{{k}}}=\mathrm{2}{kx} \\ $$$$\mathrm{ln}\:\left(\mathrm{1}+\frac{{k}}{{g}'}{v}^{\mathrm{2}} \right)=\mathrm{2}{kx} \\ $$$$\Rightarrow{v}=\sqrt{\frac{{g}'}{{k}}\left({e}^{\mathrm{2}{kx}} −\mathrm{1}\right)} \\ $$$$ \\ $$$$\frac{{dx}}{{dt}}=\sqrt{\frac{{g}'}{{k}}\left({e}^{\mathrm{2}{kx}} −\mathrm{1}\right)} \\ $$$$\Rightarrow\frac{{dx}}{\sqrt{{e}^{\mathrm{2}{kx}} −\mathrm{1}}}=\sqrt{\frac{{g}'}{{k}}}\:{dt} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\:{x}} \frac{{d}\left(\mathrm{2}{kx}\right)}{\sqrt{{e}^{\mathrm{2}{kx}} −\mathrm{1}}}=\mathrm{2}\sqrt{{kg}'}\:\int_{\mathrm{0}} ^{\:{t}} {dt} \\ $$$$\Rightarrow\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \sqrt{{e}^{\mathrm{2}{kx}} −\mathrm{1}}=\mathrm{2}\sqrt{{kg}'}\:{t} \\ $$$$\Rightarrow\mathrm{tan}^{−\mathrm{1}} \sqrt{{e}^{\mathrm{2}{kx}} −\mathrm{1}}=\sqrt{{kg}'}\:{t} \\ $$$$\Rightarrow\sqrt{{e}^{\mathrm{2}{kx}} −\mathrm{1}}=\mathrm{tan}\:\left(\sqrt{{kg}'}\:{t}\right) \\ $$$$\Rightarrow{e}^{\mathrm{2}{kx}} =\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\left(\sqrt{{kg}'}\:{t}\right)=\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \:\left(\sqrt{{kg}'}\:{t}\right)} \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{2}{k}}\mathrm{ln}\:\left[\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\left(\sqrt{{kg}'}\:{t}\right)\right]=\frac{\mathrm{1}}{{k}}\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{cos}\:\left(\sqrt{{kg}'}\:{t}\right)} \\ $$$$\Rightarrow{v}=\sqrt{\frac{{k}}{{g}'}}×\mathrm{tan}\:\left(\sqrt{{kg}'}\:{t}\right) \\ $$$$\Rightarrow{m}={m}_{\mathrm{0}} {e}^{−{kx}} =\frac{{m}_{\mathrm{0}} }{\sqrt{{e}^{\mathrm{2}{kx}} }}={m}_{\mathrm{0}} \mathrm{cos}\:\left(\sqrt{{kg}'}\:{t}\right) \\ $$$${m}=\mathrm{0}\Rightarrow\sqrt{{kg}'}\:{t}=\frac{\pi}{\mathrm{2}}\Rightarrow{t}=\frac{\pi}{\mathrm{2}\sqrt{{kg}'}} \\ $$$$\Rightarrow\mathrm{0}\leqslant{t}\leqslant\frac{\pi}{\mathrm{2}\sqrt{{kg}'}} \\ $$$$======={END}========== \\ $$$${e}^{\mathrm{2}{kx}} −\mathrm{1}=\mathrm{2}{kx}+\frac{\left(\mathrm{2}{kx}\right)^{\mathrm{2}} }{\mathrm{2}}+\frac{\left(\mathrm{2}{kx}\right)^{\mathrm{3}} }{\mathrm{6}}+... \\ $$$$\Rightarrow{v}=\sqrt{\frac{{g}'}{{k}}\left({e}^{\mathrm{2}{kx}} −\mathrm{1}\right)}\:=\sqrt{\mathrm{2}{g}'{x}\left(\mathrm{1}+{kx}+\frac{\mathrm{2}}{\mathrm{3}}{k}^{\mathrm{2}} {x}^{\mathrm{2}} +...\right)}>\sqrt{\mathrm{2}{g}'{x}} \\ $$$$ \\ $$$${Comparation}\:{with}\:{the}\:{case}\:{without} \\ $$$${mass}\:{loss}: \\ $$$${a}={g}\left(\mathrm{cos}\:\theta−\mu\:\mathrm{sin}\:\theta\right)={g}' \\ $$$$\Rightarrow{v}=\sqrt{\mathrm{2}{g}'{x}} \\ $$$$ \\ $$$$\Rightarrow{A}\:{melting}\:{ice}\:{block}\:{moves}\:{faster} \\ $$$${than}\:{a}\:{normal}\:{ice}\:{block}. \\ $$

Commented by ajfour last updated on 06/Feb/18

WonderFul Sir ! Thanks a lot.

$$\mathscr{W}{onder}\mathcal{F}{ul}\:\mathcal{S}{ir}\:!\:{Thanks}\:{a}\:{lot}. \\ $$

Commented by math solver last updated on 08/Feb/18

omg! what a solutionn.....

$${omg}!\:{what}\:{a}\:{solutionn}..... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com