Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 29973 by abdo imad last updated on 14/Feb/18

find  Σ_(n=1) ^∞   ((sin(nα))/n) x^n  with  −1<x<1.

$${find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({n}\alpha\right)}{{n}}\:{x}^{{n}} \:{with}\:\:−\mathrm{1}<{x}<\mathrm{1}. \\ $$

Commented byabdo imad last updated on 16/Feb/18

let put S(x)=Σ_(n=1) ^∞  ((sin(nα))/n)x^n  due to uniform convergence  we have S^′ (x)=Σ_(n=1) ^∞  sin(nα)x^(n−1) =Σ_(n=0) ^∞  sin((n+1)α)x^n   =Im( Σ_(n=0) ^∞   e^(i(n+1)α)  x^n )=Im( e^(iα)  Σ_(n=0) ^∞ ( x e^(iα) )^n ) we have  ∣x e^(iα) ∣<1⇒ e^(iα)  Σ_(n=0) ^∞  (xe^(iα) )^n  = e^(iα)  (1/(1−xe^(iα) )) = (1/(e^(−iα)  −x))   =(1/(cosα −i sinα −x))  =(1/(cosα−x −isinα))  =  ((cosα −x +i sinα)/((cosα−x)^2  +sin^2 α)) ⇒Im(Σ(...))=  ((sinα)/((x−cosα)^2  +sin^2 α))⇒  S(x)=∫_0 ^x       ((sinα)/((t−cosα)^2 +sin^2 α))dt +λ but λ=S(0)=0  the ch . t−cosα =sinα u give  S(x) =∫_(−cotanα) ^((x−cosα)/(sinα))         ((sinα)/(sin^2 u^2  +sin^2 α)) sinαdu  = ∫_(−cotanα) ^(((x−cosα)/(sinα))  )        (du/(1+u^2 ))  = [ arctanu]_(−cotanα) ^((x−cosα)/(sinα))   = artan(((x−cosα)/(sinα))) +artan(cotanα) .

$${let}\:{put}\:{S}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{sin}\left({n}\alpha\right)}{{n}}{x}^{{n}} \:{due}\:{to}\:{uniform}\:{convergence} \\ $$ $${we}\:{have}\:{S}^{'} \left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:{sin}\left({n}\alpha\right){x}^{{n}−\mathrm{1}} =\sum_{{n}=\mathrm{0}} ^{\infty} \:{sin}\left(\left({n}+\mathrm{1}\right)\alpha\right){x}^{{n}} \\ $$ $$={Im}\left(\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{e}^{{i}\left({n}+\mathrm{1}\right)\alpha} \:{x}^{{n}} \right)={Im}\left(\:{e}^{{i}\alpha} \:\sum_{{n}=\mathrm{0}} ^{\infty} \left(\:{x}\:{e}^{{i}\alpha} \right)^{{n}} \right)\:{we}\:{have} \\ $$ $$\mid{x}\:{e}^{{i}\alpha} \mid<\mathrm{1}\Rightarrow\:{e}^{{i}\alpha} \:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({xe}^{{i}\alpha} \right)^{{n}} \:=\:{e}^{{i}\alpha} \:\frac{\mathrm{1}}{\mathrm{1}−{xe}^{{i}\alpha} }\:=\:\frac{\mathrm{1}}{{e}^{−{i}\alpha} \:−{x}} \\ $$ $$\:=\frac{\mathrm{1}}{{cos}\alpha\:−{i}\:{sin}\alpha\:−{x}}\:\:=\frac{\mathrm{1}}{{cos}\alpha−{x}\:−{isin}\alpha} \\ $$ $$=\:\:\frac{{cos}\alpha\:−{x}\:+{i}\:{sin}\alpha}{\left({cos}\alpha−{x}\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \alpha}\:\Rightarrow{Im}\left(\Sigma\left(...\right)\right)=\:\:\frac{{sin}\alpha}{\left({x}−{cos}\alpha\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \alpha}\Rightarrow \\ $$ $${S}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:\:\:\:\:\:\frac{{sin}\alpha}{\left({t}−{cos}\alpha\right)^{\mathrm{2}} +{sin}^{\mathrm{2}} \alpha}{dt}\:+\lambda\:{but}\:\lambda={S}\left(\mathrm{0}\right)=\mathrm{0} \\ $$ $${the}\:{ch}\:.\:{t}−{cos}\alpha\:={sin}\alpha\:{u}\:{give} \\ $$ $${S}\left({x}\right)\:=\int_{−{cotan}\alpha} ^{\frac{{x}−{cos}\alpha}{{sin}\alpha}} \:\:\:\:\:\:\:\:\frac{{sin}\alpha}{{sin}^{\mathrm{2}} {u}^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \alpha}\:{sin}\alpha{du} \\ $$ $$=\:\int_{−{cotan}\alpha} ^{\frac{{x}−{cos}\alpha}{{sin}\alpha}\:\:} \:\:\:\:\:\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\:=\:\left[\:{arctanu}\right]_{−{cotan}\alpha} ^{\frac{{x}−{cos}\alpha}{{sin}\alpha}} \\ $$ $$=\:{artan}\left(\frac{{x}−{cos}\alpha}{{sin}\alpha}\right)\:+{artan}\left({cotan}\alpha\right)\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com