Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 30002 by rahul 19 last updated on 14/Feb/18

Commented by ajfour last updated on 14/Feb/18

wrong options, i think.

$${wrong}\:{options},\:{i}\:{think}. \\ $$

Commented by ajfour last updated on 15/Feb/18

Commented by ajfour last updated on 15/Feb/18

let slope of common tangent be m.  m=(dy/dx)∣_x_1   = −2x_1 +1     ...(i)  y_1 =−x_1 ^2 +x_1 +(1/2)          .....(ii)  slope of FM=((k−(1/2))/(h−(1/2))) = −(1/m)  ⇒  m=((2h−1)/(1−2k))         .....(iii)  eq. of tangent   y−y_1 =m(x−x_1 )  mid point of FM is (h+(1/2) , k+(1/2))  It lies on tangent, hence  k+(1/2)−2y_1 =m(h+(1/2)−2x_1 )   ...(iv)  using (i), (ii) and (iii)  in (iv) :  k+(1/2)+2x_1 ^2 −2x_1 −1=                 (1−2x_1 )(h+(1/2)−2x_1 )  k+(1/2)+2x_1 ^2 −2x_1 −1=h+(1/2)−2x_1                                      −2hx_1 −x_1 +4x_1 ^2   k−1=h(1−2x_1 )+2x_1 ^2 −x_1   k−1=(h−x_1 )(1−2x_1 )  k−1=(h−x_1 )m  k−1=(h+((m−1)/2))m  2(k−1)=(2h−1+m)m  2(k−1)=(2h−1+((2h−1)/(1−2k)))(((2h−1)/(1−2k)))  2(k−1)=(((2h−1)^2 )/((1−2k)))(((2−2k)/(1−2k)))  ⇒  (k−1)[1+(((2h−1)/(1−2k)))^2 ]=0  ⇒   k=1  hence locus is    y=1   .  (There has to be a shorter way,     i couldn′t find presently)

$${let}\:{slope}\:{of}\:{common}\:{tangent}\:{be}\:\boldsymbol{{m}}. \\ $$$$\boldsymbol{{m}}=\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}\mid_{{x}_{\mathrm{1}} } \:=\:−\mathrm{2}{x}_{\mathrm{1}} +\mathrm{1}\:\:\:\:\:...\left({i}\right) \\ $$$${y}_{\mathrm{1}} =−{x}_{\mathrm{1}} ^{\mathrm{2}} +{x}_{\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:.....\left({ii}\right) \\ $$$${slope}\:{of}\:{FM}=\frac{{k}−\frac{\mathrm{1}}{\mathrm{2}}}{{h}−\frac{\mathrm{1}}{\mathrm{2}}}\:=\:−\frac{\mathrm{1}}{{m}} \\ $$$$\Rightarrow\:\:{m}=\frac{\mathrm{2}{h}−\mathrm{1}}{\mathrm{1}−\mathrm{2}{k}}\:\:\:\:\:\:\:\:\:.....\left({iii}\right) \\ $$$${eq}.\:{of}\:{tangent}\: \\ $$$${y}−{y}_{\mathrm{1}} ={m}\left({x}−{x}_{\mathrm{1}} \right) \\ $$$${mid}\:{point}\:{of}\:{FM}\:{is}\:\left({h}+\frac{\mathrm{1}}{\mathrm{2}}\:,\:{k}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${It}\:{lies}\:{on}\:{tangent},\:{hence} \\ $$$${k}+\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}{y}_{\mathrm{1}} ={m}\left({h}+\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}{x}_{\mathrm{1}} \right)\:\:\:...\left({iv}\right) \\ $$$${using}\:\left({i}\right),\:\left({ii}\right)\:{and}\:\left({iii}\right)\:\:{in}\:\left({iv}\right)\:: \\ $$$${k}+\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2}{x}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}{x}_{\mathrm{1}} −\mathrm{1}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}−\mathrm{2}{x}_{\mathrm{1}} \right)\left({h}+\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}{x}_{\mathrm{1}} \right) \\ $$$${k}+\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2}{x}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}{x}_{\mathrm{1}} −\mathrm{1}={h}+\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}{x}_{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2}{hx}_{\mathrm{1}} −{x}_{\mathrm{1}} +\mathrm{4}{x}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$${k}−\mathrm{1}={h}\left(\mathrm{1}−\mathrm{2}{x}_{\mathrm{1}} \right)+\mathrm{2}{x}_{\mathrm{1}} ^{\mathrm{2}} −{x}_{\mathrm{1}} \\ $$$${k}−\mathrm{1}=\left({h}−{x}_{\mathrm{1}} \right)\left(\mathrm{1}−\mathrm{2}{x}_{\mathrm{1}} \right) \\ $$$${k}−\mathrm{1}=\left({h}−{x}_{\mathrm{1}} \right){m} \\ $$$${k}−\mathrm{1}=\left({h}+\frac{{m}−\mathrm{1}}{\mathrm{2}}\right){m} \\ $$$$\mathrm{2}\left({k}−\mathrm{1}\right)=\left(\mathrm{2}{h}−\mathrm{1}+{m}\right){m} \\ $$$$\mathrm{2}\left({k}−\mathrm{1}\right)=\left(\mathrm{2}{h}−\mathrm{1}+\frac{\mathrm{2}{h}−\mathrm{1}}{\mathrm{1}−\mathrm{2}{k}}\right)\left(\frac{\mathrm{2}{h}−\mathrm{1}}{\mathrm{1}−\mathrm{2}{k}}\right) \\ $$$$\mathrm{2}\left({k}−\mathrm{1}\right)=\frac{\left(\mathrm{2}{h}−\mathrm{1}\right)^{\mathrm{2}} }{\left(\mathrm{1}−\mathrm{2}{k}\right)}\left(\frac{\mathrm{2}−\mathrm{2}{k}}{\mathrm{1}−\mathrm{2}{k}}\right) \\ $$$$\Rightarrow\:\:\left({k}−\mathrm{1}\right)\left[\mathrm{1}+\left(\frac{\mathrm{2}{h}−\mathrm{1}}{\mathrm{1}−\mathrm{2}{k}}\right)^{\mathrm{2}} \right]=\mathrm{0} \\ $$$$\Rightarrow\:\:\:{k}=\mathrm{1} \\ $$$${hence}\:{locus}\:{is}\:\:\:\:\boldsymbol{{y}}=\mathrm{1}\:\:\:. \\ $$$$\left({There}\:{has}\:{to}\:{be}\:{a}\:{shorter}\:{way},\right. \\ $$$$\left.\:\:\:{i}\:{couldn}'{t}\:{find}\:{presently}\right) \\ $$

Commented by rahul 19 last updated on 15/Feb/18

thank u sir!  ωo𝛚.

$$\mathrm{thank}\:\mathrm{u}\:\mathrm{sir}! \\ $$$$\omega\boldsymbol{\mathrm{o}\omega}. \\ $$

Commented by rahul 19 last updated on 15/Feb/18

ok sir, then plz provide your solution.  ignoring the options.

$$\mathrm{ok}\:\mathrm{sir},\:\mathrm{then}\:\mathrm{plz}\:\mathrm{provide}\:\mathrm{your}\:\mathrm{solution}. \\ $$$$\mathrm{ignoring}\:\mathrm{the}\:\mathrm{options}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com