Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 31494 by abdo imad last updated on 09/Mar/18

prove that x^2  divide (x+1)^n_   −nx−1 .nintegr.

$${prove}\:{that}\:{x}^{\mathrm{2}} \:{divide}\:\left({x}+\mathrm{1}\right)^{\underset{} {{n}}} \:−{nx}−\mathrm{1}\:.{nintegr}. \\ $$

Commented by Rasheed.Sindhi last updated on 10/Mar/18

  (x+1)^n −nx−1  x^n +nx^(n−1) +... (((   n)),((n−2)) )x^2 +nx+1−nx−1  x^n +nx^(n−1) +... (((   n)),((n−2)) )x^2   x^2 (x^(n−2) +nx^(n−3) +... (((   n)),((n−2)) ) )  Hence x^2  divides (x+1)^n −nx−1

$$\:\:\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{n}} −\mathrm{nx}−\mathrm{1} \\ $$$$\mathrm{x}^{\mathrm{n}} +\mathrm{nx}^{\mathrm{n}−\mathrm{1}} +...\begin{pmatrix}{\:\:\:\mathrm{n}}\\{\mathrm{n}−\mathrm{2}}\end{pmatrix}\mathrm{x}^{\mathrm{2}} +\mathrm{nx}+\mathrm{1}−\mathrm{nx}−\mathrm{1} \\ $$$$\mathrm{x}^{\mathrm{n}} +\mathrm{nx}^{\mathrm{n}−\mathrm{1}} +...\begin{pmatrix}{\:\:\:\mathrm{n}}\\{\mathrm{n}−\mathrm{2}}\end{pmatrix}\mathrm{x}^{\mathrm{2}} \\ $$$$\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{n}−\mathrm{2}} +\mathrm{nx}^{\mathrm{n}−\mathrm{3}} +...\begin{pmatrix}{\:\:\:\mathrm{n}}\\{\mathrm{n}−\mathrm{2}}\end{pmatrix}\:\right) \\ $$$$\mathrm{Hence}\:\mathrm{x}^{\mathrm{2}} \:\mathrm{divides}\:\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{n}} −\mathrm{nx}−\mathrm{1} \\ $$

Commented by abdo imad last updated on 09/Mar/18

let remember this theorem  a roots of p(x) with ordr m⇔  p(a)=p^′ (a)=...=p^(m−1) (a)=0 and p^((m)) (a)≠0  and if  p(a)=p^′ (a)=...=p^((m−1)) (a)=0 ⇒(x−a)^m  divide p(x)  here we have p(x)=(x+1)^n  −nx −1 ⇒p(0)=0   p^′ (x)=n(x+1)^(n−1)  −n ⇒p^′ (0)=n−n=0 ⇒x^2 divide p(x)  plus that we have p^(′′) (x)=n(n−1)(x+1)^(n−2)  ⇒p^(′′) (p0)=n(n−1)  p^(′′) (0)≠0 ⇒0 is root of p(x) ar ordre 2.

$${let}\:{remember}\:{this}\:{theorem}\:\:{a}\:{roots}\:{of}\:{p}\left({x}\right)\:{with}\:{ordr}\:{m}\Leftrightarrow \\ $$$${p}\left({a}\right)={p}^{'} \left({a}\right)=...={p}^{{m}−\mathrm{1}} \left({a}\right)=\mathrm{0}\:{and}\:{p}^{\left({m}\right)} \left({a}\right)\neq\mathrm{0}\:\:{and}\:{if} \\ $$$${p}\left({a}\right)={p}^{'} \left({a}\right)=...={p}^{\left({m}−\mathrm{1}\right)} \left({a}\right)=\mathrm{0}\:\Rightarrow\left({x}−{a}\right)^{{m}} \:{divide}\:{p}\left({x}\right) \\ $$$${here}\:{we}\:{have}\:{p}\left({x}\right)=\left({x}+\mathrm{1}\right)^{{n}} \:−{nx}\:−\mathrm{1}\:\Rightarrow{p}\left(\mathrm{0}\right)=\mathrm{0}\: \\ $$$${p}^{'} \left({x}\right)={n}\left({x}+\mathrm{1}\right)^{{n}−\mathrm{1}} \:−{n}\:\Rightarrow{p}^{'} \left(\mathrm{0}\right)={n}−{n}=\mathrm{0}\:\Rightarrow{x}^{\mathrm{2}} {divide}\:{p}\left({x}\right) \\ $$$${plus}\:{that}\:{we}\:{have}\:{p}^{''} \left({x}\right)={n}\left({n}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)^{{n}−\mathrm{2}} \:\Rightarrow{p}^{''} \left({p}\mathrm{0}\right)={n}\left({n}−\mathrm{1}\right) \\ $$$${p}^{''} \left(\mathrm{0}\right)\neq\mathrm{0}\:\Rightarrow\mathrm{0}\:{is}\:{root}\:{of}\:{p}\left({x}\right)\:{ar}\:{ordre}\:\mathrm{2}. \\ $$$$ \\ $$

Commented by abdo imad last updated on 09/Mar/18

your answer is also correct sir rachid...

$${your}\:{answer}\:{is}\:{also}\:{correct}\:{sir}\:{rachid}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com