Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 32316 by NECx last updated on 23/Mar/18

A gas expands according to the  law pv=constant,where p is the  pressure and v is the volume of  the gas.Initially,v=1000m^3  and  p=40N/m^2 .If the pressure is  decreased at the rate of 5Nm^(−2) min^(−1)   find the rate at which the gas is  expanding when its volume is  2000m^(3.)

$${A}\:{gas}\:{expands}\:{according}\:{to}\:{the} \\ $$$${law}\:{pv}={constant},{where}\:{p}\:{is}\:{the} \\ $$$${pressure}\:{and}\:{v}\:{is}\:{the}\:{volume}\:{of} \\ $$$${the}\:{gas}.{Initially},{v}=\mathrm{1000}{m}^{\mathrm{3}} \:{and} \\ $$$${p}=\mathrm{40}{N}/{m}^{\mathrm{2}} .{If}\:{the}\:{pressure}\:{is} \\ $$$${decreased}\:{at}\:{the}\:{rate}\:{of}\:\mathrm{5}{Nm}^{−\mathrm{2}} {min}^{−\mathrm{1}} \\ $$$${find}\:{the}\:{rate}\:{at}\:{which}\:{the}\:{gas}\:{is} \\ $$$${expanding}\:{when}\:{its}\:{volume}\:{is} \\ $$$$\mathrm{2000}{m}^{\mathrm{3}.} \\ $$

Commented by NECx last updated on 23/Mar/18

I did it this way but the textbook  says its wrong:    pv=constant(p_1 v_1 =p_2 v_2 )  ∴ 1000×40=2000×p_2       p_2 =20Nm^(−2)   ∴dp=20−40=−20Nm^(−2)     ⇒(dp/dt)=5⇒dt=20/5=4min    ∴dv/dt=(2000−1000)/4            =250m^3 min^(−1)     please correct me where I got it  wrong.

$${I}\:{did}\:{it}\:{this}\:{way}\:{but}\:{the}\:{textbook} \\ $$$${says}\:{its}\:{wrong}: \\ $$$$ \\ $$$${pv}={constant}\left({p}_{\mathrm{1}} {v}_{\mathrm{1}} ={p}_{\mathrm{2}} {v}_{\mathrm{2}} \right) \\ $$$$\therefore\:\mathrm{1000}×\mathrm{40}=\mathrm{2000}×{p}_{\mathrm{2}} \\ $$$$\:\:\:\:{p}_{\mathrm{2}} =\mathrm{20}{Nm}^{−\mathrm{2}} \\ $$$$\therefore{dp}=\mathrm{20}−\mathrm{40}=−\mathrm{20}{Nm}^{−\mathrm{2}} \\ $$$$ \\ $$$$\Rightarrow\frac{{dp}}{{dt}}=\mathrm{5}\Rightarrow{dt}=\mathrm{20}/\mathrm{5}=\mathrm{4}{min} \\ $$$$ \\ $$$$\therefore{dv}/{dt}=\left(\mathrm{2000}−\mathrm{1000}\right)/\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{250}{m}^{\mathrm{3}} {min}^{−\mathrm{1}} \\ $$$$ \\ $$$${please}\:{correct}\:{me}\:{where}\:{I}\:{got}\:{it} \\ $$$${wrong}. \\ $$

Commented by NECx last updated on 23/Mar/18

textbook says 500m^3 min^(−1)

$${textbook}\:{says}\:\mathrm{500}{m}^{\mathrm{3}} {min}^{−\mathrm{1}} \\ $$

Commented by mrW2 last updated on 23/Mar/18

v=(c/p)  (dv/dt)=−(c/p^2 )×(dp/dt)=−(v/p)×(dp/dt)  at t=t_2 :  v=2000 m^3  and p=20 N/m^2   ⇒(dv/dt)=−((2000)/(20))×(−5)=500 m^3 /min    ××××××  p(t)=p_0 −5t  v(t)=(c/(p_0 −5t))  v_0 =(c/p_0 )  ⇒v(t)=((p_0 v_0 )/(p_0 −5t))=(v_0 /(1−((5t)/p_0 )))  (dv/dt)≠constant

$${v}=\frac{{c}}{{p}} \\ $$$$\frac{{dv}}{{dt}}=−\frac{{c}}{{p}^{\mathrm{2}} }×\frac{{dp}}{{dt}}=−\frac{{v}}{{p}}×\frac{{dp}}{{dt}} \\ $$$${at}\:{t}={t}_{\mathrm{2}} : \\ $$$${v}=\mathrm{2000}\:{m}^{\mathrm{3}} \:{and}\:{p}=\mathrm{20}\:{N}/{m}^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{dv}}{{dt}}=−\frac{\mathrm{2000}}{\mathrm{20}}×\left(−\mathrm{5}\right)=\mathrm{500}\:{m}^{\mathrm{3}} /{min} \\ $$$$ \\ $$$$×××××× \\ $$$${p}\left({t}\right)={p}_{\mathrm{0}} −\mathrm{5}{t} \\ $$$${v}\left({t}\right)=\frac{{c}}{{p}_{\mathrm{0}} −\mathrm{5}{t}} \\ $$$${v}_{\mathrm{0}} =\frac{{c}}{{p}_{\mathrm{0}} } \\ $$$$\Rightarrow{v}\left({t}\right)=\frac{{p}_{\mathrm{0}} {v}_{\mathrm{0}} }{{p}_{\mathrm{0}} −\mathrm{5}{t}}=\frac{{v}_{\mathrm{0}} }{\mathrm{1}−\frac{\mathrm{5}{t}}{{p}_{\mathrm{0}} }} \\ $$$$\frac{{dv}}{{dt}}\neq{constant} \\ $$

Commented by NECx last updated on 23/Mar/18

thank you so much

$${thank}\:{you}\:{so}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com