Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33170 by prof Abdo imad last updated on 11/Apr/18

prove that  ∫_0 ^∞  ((∣sinx∣)/x) dx is divergent.

$${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mid{sinx}\mid}{{x}}\:{dx}\:{is}\:{divergent}. \\ $$

Commented by prof Abdo imad last updated on 13/Apr/18

∫_0 ^∞    ((∣sinx∣)/x)dx  =lim_(n→+∞)   A_n   with  A_n   = ∫_0 ^(nπ)   ((∣sinx∣)/x)dx  but   A_n  = Σ_(k=0) ^n   ∫_(kπ) ^((k+1)π)    ((∣sinx∣)/x)dx    =_(x=kπ +t)    Σ_(k=0) ^n   ∫_0 ^π    ((sint)/(kπ +t)) dt   but  0≤t≤π ⇒ kπ ≤ kπ +t ≤(k+1)π ⇒  (1/((k+1)π)) ≤  (1/(kπ+t)) ≤  (1/(kπ)) ⇒ ((sint)/(kπ+t)) ≥ ((sint)/((k+1)π))  ∀ t∈[0,π]  ⇒ ∫_0 ^π    ((sint)/(kπ+t)) dt  ≥ (1/((k+1)π)) ∫_0 ^π  sintdt = (2/((k+1)π)) ⇒  A_n   ≥ (2/π) Σ_(k=0) ^n   (1/(k+1)) ⇒ A_n  ≥ (2/π) Σ_(k=1) ^(n+1)  (1/k) ⇒  A_n  ≥ (2/π) H_(n+1)  _(n→+∞)  →+∞ so lim_(n→+∞)  A_n  =+∞  and the integral is divergent.

$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mid{sinx}\mid}{{x}}{dx}\:\:={lim}_{{n}\rightarrow+\infty} \:\:{A}_{{n}} \:\:{with} \\ $$$${A}_{{n}} \:\:=\:\int_{\mathrm{0}} ^{{n}\pi} \:\:\frac{\mid{sinx}\mid}{{x}}{dx}\:\:{but}\: \\ $$$${A}_{{n}} \:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\int_{{k}\pi} ^{\left({k}+\mathrm{1}\right)\pi} \:\:\:\frac{\mid{sinx}\mid}{{x}}{dx}\:\: \\ $$$$=_{{x}={k}\pi\:+{t}} \:\:\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{sint}}{{k}\pi\:+{t}}\:{dt}\:\:\:{but} \\ $$$$\mathrm{0}\leqslant{t}\leqslant\pi\:\Rightarrow\:{k}\pi\:\leqslant\:{k}\pi\:+{t}\:\leqslant\left({k}+\mathrm{1}\right)\pi\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)\pi}\:\leqslant\:\:\frac{\mathrm{1}}{{k}\pi+{t}}\:\leqslant\:\:\frac{\mathrm{1}}{{k}\pi}\:\Rightarrow\:\frac{{sint}}{{k}\pi+{t}}\:\geqslant\:\frac{{sint}}{\left({k}+\mathrm{1}\right)\pi}\:\:\forall\:{t}\in\left[\mathrm{0},\pi\right] \\ $$$$\Rightarrow\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{sint}}{{k}\pi+{t}}\:{dt}\:\:\geqslant\:\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)\pi}\:\int_{\mathrm{0}} ^{\pi} \:{sintdt}\:=\:\frac{\mathrm{2}}{\left({k}+\mathrm{1}\right)\pi}\:\Rightarrow \\ $$$${A}_{{n}} \:\:\geqslant\:\frac{\mathrm{2}}{\pi}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}+\mathrm{1}}\:\Rightarrow\:{A}_{{n}} \:\geqslant\:\frac{\mathrm{2}}{\pi}\:\sum_{{k}=\mathrm{1}} ^{{n}+\mathrm{1}} \:\frac{\mathrm{1}}{{k}}\:\Rightarrow \\ $$$${A}_{{n}} \:\geqslant\:\frac{\mathrm{2}}{\pi}\:{H}_{{n}+\mathrm{1}} \:_{{n}\rightarrow+\infty} \:\rightarrow+\infty\:{so}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \:=+\infty \\ $$$${and}\:{the}\:{integral}\:{is}\:{divergent}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com