Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33232 by prof Abdo imad last updated on 13/Apr/18

find the value of   ∫_(−∞) ^(+∞)    ((x sin(2x))/((1+4x^2 )^2 )) dx .

$${find}\:{the}\:{value}\:{of}\:\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}\:{sin}\left(\mathrm{2}{x}\right)}{\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:. \\ $$

Commented by prof Abdo imad last updated on 15/Apr/18

let put  I = ∫_(−∞) ^(+∞)   ((x sinx)/((1+4x^2 )^2 ))dx  I  =−(1/8) ∫_(−∞) ^(+∞)   (((−8x)/((1+4x^2 )^2 ))) sin(2x)dx by psrts  u^′   = ((−8x)/((1+4x^2 ))) and v(x)=sin(2x) ⇒  −8 I = [  (1/((1+4x^2 ))) sin(2x)]_(−∞) ^(+∞)  −∫_(−∞) ^(+∞)  (1/(1+4x^2 ))2 cos(2x)dx  =−2 ∫_(−∞) ^(+∞)     ((cos(2x))/(1+4x^2 ))dx ⇒ I =(1/4) ∫_(−∞) ^(+∞)   ((cos(2x))/(1+4x^2 ))dx  ∫_(−∞) ^(+∞)    ((cos(2x))/(1+4x^2 ))dx =Re( ∫_(−∞) ^(+∞)    (e^(i2x) /(1+4x^2 ))dx)  let introduce the complex finction  ϕ(z) = (e^(2iz) /(1+4z^2 ))  we have ϕ(z) = (e^(2iz) /((2z−i)(2z+i)))  = (e^(2iz) /(4( z −(i/2))(z+(i/2)))) so the poles of ϕ are (i/2) and  −(i/2)  ⇒ ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,(i/2))  Res(ϕ,(i/2)) = lim_(z→(i/2)) (z−(i/2))ϕ(z)  =  (e^(2i(i/2)) /(4(2(i/2))))=  (e^(−1) /(4i))  ⇒ ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ .(e^(−1) /(4i))  = (π/(2e)) ⇒ I =(1/4) (π/(2e)) ⇒  I = (π/(8e)) .

$${let}\:{put}\:\:{I}\:=\:\int_{−\infty} ^{+\infty} \:\:\frac{{x}\:{sinx}}{\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$${I}\:\:=−\frac{\mathrm{1}}{\mathrm{8}}\:\int_{−\infty} ^{+\infty} \:\:\left(\frac{−\mathrm{8}{x}}{\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\right)\:{sin}\left(\mathrm{2}{x}\right){dx}\:{by}\:{psrts} \\ $$$${u}^{'} \:\:=\:\frac{−\mathrm{8}{x}}{\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)}\:{and}\:{v}\left({x}\right)={sin}\left(\mathrm{2}{x}\right)\:\Rightarrow \\ $$$$−\mathrm{8}\:{I}\:=\:\left[\:\:\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)}\:{sin}\left(\mathrm{2}{x}\right)\right]_{−\infty} ^{+\infty} \:−\int_{−\infty} ^{+\infty} \:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }\mathrm{2}\:{cos}\left(\mathrm{2}{x}\right){dx} \\ $$$$=−\mathrm{2}\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }{dx}\:\Rightarrow\:{I}\:=\frac{\mathrm{1}}{\mathrm{4}}\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }{dx} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }{dx}\:={Re}\left(\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{{i}\mathrm{2}{x}} }{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }{dx}\right) \\ $$$${let}\:{introduce}\:{the}\:{complex}\:{finction} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{e}^{\mathrm{2}{iz}} }{\mathrm{1}+\mathrm{4}{z}^{\mathrm{2}} }\:\:{we}\:{have}\:\varphi\left({z}\right)\:=\:\frac{{e}^{\mathrm{2}{iz}} }{\left(\mathrm{2}{z}−{i}\right)\left(\mathrm{2}{z}+{i}\right)} \\ $$$$=\:\frac{{e}^{\mathrm{2}{iz}} }{\mathrm{4}\left(\:{z}\:−\frac{{i}}{\mathrm{2}}\right)\left({z}+\frac{{i}}{\mathrm{2}}\right)}\:{so}\:{the}\:{poles}\:{of}\:\varphi\:{are}\:\frac{{i}}{\mathrm{2}}\:{and} \\ $$$$−\frac{{i}}{\mathrm{2}}\:\:\Rightarrow\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,\frac{{i}}{\mathrm{2}}\right) \\ $$$${Res}\left(\varphi,\frac{{i}}{\mathrm{2}}\right)\:=\:{lim}_{{z}\rightarrow\frac{{i}}{\mathrm{2}}} \left({z}−\frac{{i}}{\mathrm{2}}\right)\varphi\left({z}\right) \\ $$$$=\:\:\frac{{e}^{\mathrm{2}{i}\frac{{i}}{\mathrm{2}}} }{\mathrm{4}\left(\mathrm{2}\frac{{i}}{\mathrm{2}}\right)}=\:\:\frac{{e}^{−\mathrm{1}} }{\mathrm{4}{i}}\:\:\Rightarrow\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:.\frac{{e}^{−\mathrm{1}} }{\mathrm{4}{i}} \\ $$$$=\:\frac{\pi}{\mathrm{2}{e}}\:\Rightarrow\:{I}\:=\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\pi}{\mathrm{2}{e}}\:\Rightarrow\:\:{I}\:=\:\frac{\pi}{\mathrm{8}{e}}\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com