Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 3348 by RasheedSindhi last updated on 11/Dec/15

Prove that the regular pentagon  is possible with ruler and compass.

$${Prove}\:{that}\:{the}\:{regular}\:{pentagon} \\ $$$${is}\:{possible}\:{with}\:{ruler}\:{and}\:{compass}. \\ $$

Commented by Rasheed Soomro last updated on 11/Dec/15

How can we prove that angle 108° is  possible?

$$\mathcal{H}{ow}\:{can}\:{we}\:{prove}\:{that}\:{angle}\:\mathrm{108}°\:{is} \\ $$$${possible}? \\ $$

Commented by prakash jain last updated on 11/Dec/15

sin 5x=sin (4x+x)=  sin 4xcos x+cos 4xsin x  =2sin 2xcos 2xcos x+(1−2sin^2 2x)sin x  =4sin xcos^2 x(1−2sin^2 x)+(1−8sin^2 xcos^2 x)sin x  =4sin x(1−sin^2 x)(1−2sin^2 x)+(1−8sin^2 x+8sin^4 x)sin x  =4sinx −12sin^3 x+8sin^5 x+sin x−8sin^3 x+8sin^5 x  =16sin^5 x−20sin^3 x+5sin x  x=18°  5x=90  sin 18°=y  16y^5 −20y^3 +5y−1=0  y=1 satisfies  16y^5 −16y^4 +16y^4 −16y^3 −4y^3 +4y^2 −4y^2 +4y+y−1=0  (y−1)(16y^4 +16y^3 −4y^2 −4y+1)=0  (y−1)[4y^2 (4y^2 +4y+1)−8y^2 −4y+1]=0  (y−1)[4y^2 (2y+1)^2 −4y(2y+1)+1]=0  (y−1)(2y(2y+1)−1)^2 =0  (y−1)(4y^2 +2y−1)^2 =0  y=1 or y=((−2±(√(4+16)))/8)=((−1±(√5))/4)  sin 18>0 so sin 18°=(((√5)−1)/4)

$$\mathrm{sin}\:\mathrm{5}{x}=\mathrm{sin}\:\left(\mathrm{4}{x}+{x}\right)= \\ $$$$\mathrm{sin}\:\mathrm{4}{x}\mathrm{cos}\:{x}+\mathrm{cos}\:\mathrm{4}{x}\mathrm{sin}\:{x} \\ $$$$=\mathrm{2sin}\:\mathrm{2}{x}\mathrm{cos}\:\mathrm{2}{x}\mathrm{cos}\:{x}+\left(\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \mathrm{2}{x}\right)\mathrm{sin}\:{x} \\ $$$$=\mathrm{4sin}\:{x}\mathrm{cos}^{\mathrm{2}} {x}\left(\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} {x}\right)+\left(\mathrm{1}−\mathrm{8sin}^{\mathrm{2}} {x}\mathrm{cos}^{\mathrm{2}} {x}\right)\mathrm{sin}\:{x} \\ $$$$=\mathrm{4sin}\:{x}\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} {x}\right)\left(\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} {x}\right)+\left(\mathrm{1}−\mathrm{8sin}^{\mathrm{2}} {x}+\mathrm{8sin}^{\mathrm{4}} {x}\right)\mathrm{sin}\:{x} \\ $$$$=\mathrm{4sin}{x}\:−\mathrm{12sin}^{\mathrm{3}} {x}+\mathrm{8sin}^{\mathrm{5}} {x}+\mathrm{sin}\:{x}−\mathrm{8sin}^{\mathrm{3}} {x}+\mathrm{8sin}^{\mathrm{5}} {x} \\ $$$$=\mathrm{16sin}^{\mathrm{5}} {x}−\mathrm{20sin}^{\mathrm{3}} {x}+\mathrm{5sin}\:{x} \\ $$$${x}=\mathrm{18}° \\ $$$$\mathrm{5}{x}=\mathrm{90} \\ $$$$\mathrm{sin}\:\mathrm{18}°={y} \\ $$$$\mathrm{16}{y}^{\mathrm{5}} −\mathrm{20}{y}^{\mathrm{3}} +\mathrm{5}{y}−\mathrm{1}=\mathrm{0} \\ $$$${y}=\mathrm{1}\:{satisfies} \\ $$$$\mathrm{16}{y}^{\mathrm{5}} −\mathrm{16}{y}^{\mathrm{4}} +\mathrm{16}{y}^{\mathrm{4}} −\mathrm{16}{y}^{\mathrm{3}} −\mathrm{4}{y}^{\mathrm{3}} +\mathrm{4}{y}^{\mathrm{2}} −\mathrm{4}{y}^{\mathrm{2}} +\mathrm{4}{y}+{y}−\mathrm{1}=\mathrm{0} \\ $$$$\left({y}−\mathrm{1}\right)\left(\mathrm{16}{y}^{\mathrm{4}} +\mathrm{16}{y}^{\mathrm{3}} −\mathrm{4}{y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({y}−\mathrm{1}\right)\left[\mathrm{4}{y}^{\mathrm{2}} \left(\mathrm{4}{y}^{\mathrm{2}} +\mathrm{4}{y}+\mathrm{1}\right)−\mathrm{8}{y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{1}\right]=\mathrm{0} \\ $$$$\left({y}−\mathrm{1}\right)\left[\mathrm{4}{y}^{\mathrm{2}} \left(\mathrm{2}{y}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}{y}\left(\mathrm{2}{y}+\mathrm{1}\right)+\mathrm{1}\right]=\mathrm{0} \\ $$$$\left({y}−\mathrm{1}\right)\left(\mathrm{2}{y}\left(\mathrm{2}{y}+\mathrm{1}\right)−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({y}−\mathrm{1}\right)\left(\mathrm{4}{y}^{\mathrm{2}} +\mathrm{2}{y}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${y}=\mathrm{1}\:{or}\:{y}=\frac{−\mathrm{2}\pm\sqrt{\mathrm{4}+\mathrm{16}}}{\mathrm{8}}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$\mathrm{sin}\:\mathrm{18}>\mathrm{0}\:\mathrm{so}\:\mathrm{sin}\:\mathrm{18}°=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}} \\ $$

Commented by prakash jain last updated on 11/Dec/15

Angle=108°

$$\mathrm{Angle}=\mathrm{108}° \\ $$

Answered by prakash jain last updated on 11/Dec/15

As shown in comments  sin 18°=(((√5)−1)/4)  With ruler and compass:  We can draw (√5). So we can draw (√5) −1  we can draw 4.  we can draw right angle  So we can create a right angle △ABC with  AB=(√5) −1 ∠ABC=90 AC=4  Then sin∠ACB=(((√5)−1)/4)  so ∠C=18°  Since we draw 90° and 18° with ruler and  compass hence we can draw required 108°.  So a regular pentagon can be drawn with  ruler and compass.

$$\mathrm{As}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{comments} \\ $$$$\mathrm{sin}\:\mathrm{18}°=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{With}\:\mathrm{ruler}\:\mathrm{and}\:\mathrm{compass}: \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{draw}\:\sqrt{\mathrm{5}}.\:\mathrm{So}\:\mathrm{we}\:\mathrm{can}\:\mathrm{draw}\:\sqrt{\mathrm{5}}\:−\mathrm{1} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{draw}\:\mathrm{4}. \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{draw}\:\mathrm{right}\:\mathrm{angle} \\ $$$$\mathrm{So}\:\mathrm{we}\:\mathrm{can}\:\mathrm{create}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angle}\:\bigtriangleup\mathrm{ABC}\:\mathrm{with} \\ $$$$\mathrm{AB}=\sqrt{\mathrm{5}}\:−\mathrm{1}\:\angle\mathrm{ABC}=\mathrm{90}\:\mathrm{AC}=\mathrm{4} \\ $$$$\mathrm{Then}\:\mathrm{sin}\angle\mathrm{ACB}=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{so}\:\angle\mathrm{C}=\mathrm{18}° \\ $$$$\mathrm{Since}\:\mathrm{we}\:\mathrm{draw}\:\mathrm{90}°\:\mathrm{and}\:\mathrm{18}°\:\mathrm{with}\:\mathrm{ruler}\:\mathrm{and} \\ $$$$\mathrm{compass}\:\mathrm{hence}\:\mathrm{we}\:\mathrm{can}\:\mathrm{draw}\:\mathrm{required}\:\mathrm{108}°. \\ $$$$\mathrm{So}\:\mathrm{a}\:\mathrm{regular}\:\mathrm{pentagon}\:\mathrm{can}\:\mathrm{be}\:\mathrm{drawn}\:\mathrm{with} \\ $$$$\mathrm{ruler}\:\mathrm{and}\:\mathrm{compass}. \\ $$

Commented by prakash jain last updated on 11/Dec/15

sin 18=(((√5)−1)/4),sin^2 18=((6−2(√5))/(16))=((3−(√5))/8)  cos^2  18=1−sin^2 18=1−((3−(√5))/8)=((5+(√5))/8)  cos 36=cos^2 18−sin^2 18=((2+2(√5))/8)=((1+(√5))/4)  For actual construction drawing 36° might be  easier.  Suppose you want draw pentagon of side 1.  draw AB=1  Draw BX =(√5) so AX=1+(√5)  Draw ⊥^r  to AX at X.  Draw an arc with Radius 4cm with center at  A. Say it cuts AX at Y.  ∠YAX=36°  draw line joining AY  Draw an Arc of radius 1 from B. Say it cuts  AY at C.  join BC. ∠ABC=108°  AB and BC are 2 sides of pentagon.  Rest of sides can be drawn by repeating ABC  since all 3 sides are known.

$$\mathrm{sin}\:\mathrm{18}=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}},\mathrm{sin}^{\mathrm{2}} \mathrm{18}=\frac{\mathrm{6}−\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{16}}=\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{8}} \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\mathrm{18}=\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \mathrm{18}=\mathrm{1}−\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{8}}=\frac{\mathrm{5}+\sqrt{\mathrm{5}}}{\mathrm{8}} \\ $$$$\mathrm{cos}\:\mathrm{36}=\mathrm{cos}^{\mathrm{2}} \mathrm{18}−\mathrm{sin}^{\mathrm{2}} \mathrm{18}=\frac{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{8}}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$\mathrm{For}\:\mathrm{actual}\:\mathrm{construction}\:\mathrm{drawing}\:\mathrm{36}°\:\mathrm{might}\:\mathrm{be} \\ $$$$\mathrm{easier}. \\ $$$$\mathrm{Suppose}\:\mathrm{you}\:\mathrm{want}\:\mathrm{draw}\:\mathrm{pentagon}\:\mathrm{of}\:\mathrm{side}\:\mathrm{1}. \\ $$$$\mathrm{draw}\:\mathrm{AB}=\mathrm{1} \\ $$$$\mathrm{Draw}\:\mathrm{BX}\:=\sqrt{\mathrm{5}}\:\mathrm{so}\:\mathrm{AX}=\mathrm{1}+\sqrt{\mathrm{5}} \\ $$$$\mathrm{Draw}\:\bot^{{r}} \:\mathrm{to}\:\mathrm{AX}\:\mathrm{at}\:\mathrm{X}. \\ $$$$\mathrm{Draw}\:\mathrm{an}\:\mathrm{arc}\:\mathrm{with}\:\mathrm{Radius}\:\mathrm{4cm}\:\mathrm{with}\:\mathrm{center}\:\mathrm{at} \\ $$$$\mathrm{A}.\:\mathrm{Say}\:\mathrm{it}\:\mathrm{cuts}\:\mathrm{AX}\:\mathrm{at}\:\mathrm{Y}. \\ $$$$\angle\mathrm{YAX}=\mathrm{36}° \\ $$$$\mathrm{draw}\:\mathrm{line}\:\mathrm{joining}\:\mathrm{AY} \\ $$$$\mathrm{Draw}\:\mathrm{an}\:\mathrm{Arc}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{1}\:\mathrm{from}\:\mathrm{B}.\:\mathrm{Say}\:\mathrm{it}\:\mathrm{cuts} \\ $$$$\mathrm{AY}\:\mathrm{at}\:\mathrm{C}. \\ $$$$\mathrm{join}\:\mathrm{BC}.\:\angle\mathrm{ABC}=\mathrm{108}° \\ $$$$\mathrm{AB}\:\mathrm{and}\:\mathrm{BC}\:\mathrm{are}\:\mathrm{2}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{pentagon}. \\ $$$$\mathrm{Rest}\:\mathrm{of}\:\mathrm{sides}\:\mathrm{can}\:\mathrm{be}\:\mathrm{drawn}\:\mathrm{by}\:\mathrm{repeating}\:\mathrm{ABC} \\ $$$$\mathrm{since}\:\mathrm{all}\:\mathrm{3}\:\mathrm{sides}\:\mathrm{are}\:\mathrm{known}.\: \\ $$

Commented by Rasheed Soomro last updated on 13/Dec/15

You interest and have knowledge in so many   areas of mathematics !!!   GREAT !

$$\boldsymbol{\mathrm{You}}\:\boldsymbol{\mathrm{interest}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{have}}\:\boldsymbol{\mathrm{knowledge}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{so}}\:\boldsymbol{\mathrm{many}}\: \\ $$$$\boldsymbol{\mathrm{areas}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{mathematics}}\:!!!\: \\ $$$$\mathcal{GREAT}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com