Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 33699 by math khazana by abdo last updated on 22/Apr/18

let S(x)=Σ_(n=0) ^∞  f_n (x)  with f_n (x)= (((−1)^n )/(n!(x+n)))  x∈]0,+∞[  1)  prove that S id defined .calculate S(1) and  prove that ∀x>0  xS(x) −S(x+1) =(1/e)  2) prove that S is C^∞  on R^(+∗)   3) prove that S(x) ∼ (1/x) (x→0^+ ) .

$${let}\:{S}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:{f}_{{n}} \left({x}\right)\:\:{with}\:{f}_{{n}} \left({x}\right)=\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({x}+{n}\right)} \\ $$ $$\left.{x}\in\right]\mathrm{0},+\infty\left[\right. \\ $$ $$\left.\mathrm{1}\right)\:\:{prove}\:{that}\:{S}\:{id}\:{defined}\:.{calculate}\:{S}\left(\mathrm{1}\right)\:{and} \\ $$ $${prove}\:{that}\:\forall{x}>\mathrm{0}\:\:{xS}\left({x}\right)\:−{S}\left({x}+\mathrm{1}\right)\:=\frac{\mathrm{1}}{{e}} \\ $$ $$\left.\mathrm{2}\right)\:{prove}\:{that}\:{S}\:{is}\:{C}^{\infty} \:{on}\:{R}^{+\ast} \\ $$ $$\left.\mathrm{3}\right)\:{prove}\:{that}\:{S}\left({x}\right)\:\sim\:\frac{\mathrm{1}}{{x}}\:\left({x}\rightarrow\mathrm{0}^{+} \right)\:. \\ $$

Commented bymath khazana by abdo last updated on 29/Apr/18

we have ∣f_n (x)∣= (1/(n!(x+n))) ≤ (1/(n(n!))) but the seSrie  Σ  (1/(n(n!))) is convergent so S is defined on]0,+∞[  S(1)=Σ_(n=0) ^∞  f_n (1) =Σ_(n=0) ^∞   (((−1)^n )/(n!(n+1)))  let w(x) = Σ_(n=0) ^∞    (((−1)^n )/(n!(n+1))) x^(n+1)   w^′ (x) = Σ_(n=0) ^∞   (((−1)^n  x^n )/(n!)) = Σ_(n=0) ^∞   (((−x)^n )/(n!)) =e^(−x)  ⇒  w(x)=−e^(−x)  +λ  we have w(0)=0 =−1 +λ ⇒  λ=1 ⇒w(x)=1−e^(−x)   S(1)=w(1)= 1−(1/e) .  xS(x) −S(x+1)=Σ_(n=0) ^∞   ((x(−1)^n )/(n!(x+n))) −Σ_(n=0) ^∞  (((−1)^n )/(n!(x+n+1)))  =1+Σ_(n=1) ^∞    (((−1)^n )/(n!)) ( ((x+n −n)/(x+n))) −Σ_(n=0) ^∞   (((−1)^n )/(n!(x+n+1)))  =Σ_(n=0) ^∞  (((−1)^n )/(n!)) −Σ_(n=1) ^∞   (((−1)^n )/((n−1)!(x+n))) −Σ_(n=0) ^∞   (((−1)^n )/(n!(x+n+1)))  = (1/e) −Σ_(n=0) ^∞   (((−1)^(n+1) )/(n!(x+n +1))) −Σ_(n=0) ^∞   (((−1)^n )/(n!(x+n+1)))  =(1/e) ⇒ xS(x) −S(x+1) =(1/e)

$${we}\:{have}\:\mid{f}_{{n}} \left({x}\right)\mid=\:\frac{\mathrm{1}}{{n}!\left({x}+{n}\right)}\:\leqslant\:\frac{\mathrm{1}}{{n}\left({n}!\right)}\:{but}\:{the}\:{seSrie} \\ $$ $$\left.\Sigma\:\:\frac{\mathrm{1}}{{n}\left({n}!\right)}\:{is}\:{convergent}\:{so}\:{S}\:{is}\:{defined}\:{on}\right]\mathrm{0},+\infty\left[\right. \\ $$ $${S}\left(\mathrm{1}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:{f}_{{n}} \left(\mathrm{1}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({n}+\mathrm{1}\right)} \\ $$ $${let}\:{w}\left({x}\right)\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({n}+\mathrm{1}\right)}\:{x}^{{n}+\mathrm{1}} \\ $$ $${w}^{'} \left({x}\right)\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{x}^{{n}} }{{n}!}\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−{x}\right)^{{n}} }{{n}!}\:={e}^{−{x}} \:\Rightarrow \\ $$ $${w}\left({x}\right)=−{e}^{−{x}} \:+\lambda\:\:{we}\:{have}\:{w}\left(\mathrm{0}\right)=\mathrm{0}\:=−\mathrm{1}\:+\lambda\:\Rightarrow \\ $$ $$\lambda=\mathrm{1}\:\Rightarrow{w}\left({x}\right)=\mathrm{1}−{e}^{−{x}} \\ $$ $${S}\left(\mathrm{1}\right)={w}\left(\mathrm{1}\right)=\:\mathrm{1}−\frac{\mathrm{1}}{{e}}\:. \\ $$ $${xS}\left({x}\right)\:−{S}\left({x}+\mathrm{1}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{x}\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({x}+{n}\right)}\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({x}+{n}+\mathrm{1}\right)} \\ $$ $$=\mathrm{1}+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:\left(\:\frac{{x}+{n}\:−{n}}{{x}+{n}}\right)\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({x}+{n}+\mathrm{1}\right)} \\ $$ $$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:−\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}−\mathrm{1}\right)!\left({x}+{n}\right)}\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({x}+{n}+\mathrm{1}\right)} \\ $$ $$=\:\frac{\mathrm{1}}{{e}}\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}!\left({x}+{n}\:+\mathrm{1}\right)}\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({x}+{n}+\mathrm{1}\right)} \\ $$ $$=\frac{\mathrm{1}}{{e}}\:\Rightarrow\:{xS}\left({x}\right)\:−{S}\left({x}+\mathrm{1}\right)\:=\frac{\mathrm{1}}{{e}} \\ $$

Commented bymath khazana by abdo last updated on 29/Apr/18

2) due to uniform convergence and f_n  are C^∞   S will be C^  on ]0,+∞[ and  S^((p)) (x) =Σ_(n=0) ^∞   f_n ^((p)) (x)= Σ_(n=0) ^∞  (((−1)^n )/(n!))  (((−1)^p p!)/((x+n)^(p+1) )) .

$$\left.\mathrm{2}\right)\:{due}\:{to}\:{uniform}\:{convergence}\:{and}\:{f}_{{n}} \:{are}\:{C}^{\infty} \\ $$ $$\left.{S}\:{will}\:{be}\:{C}^{} \:{on}\:\right]\mathrm{0},+\infty\left[\:{and}\right. \\ $$ $${S}^{\left({p}\right)} \left({x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{f}_{{n}} ^{\left({p}\right)} \left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:\:\frac{\left(−\mathrm{1}\right)^{{p}} {p}!}{\left({x}+{n}\right)^{{p}+\mathrm{1}} }\:. \\ $$ $$ \\ $$

Commented bymath khazana by abdo last updated on 29/Apr/18

3) we have proved that  xS(x)−S(x+1)=(1/e) ⇒  x S(x) −S(1)∼ (1/e)  (x→0^+ ) ⇒  xS(x) −1+(1/e) ∼ (1/e) ⇒ S(x)∼ (1/x) (x→0^+ ) .

$$\left.\mathrm{3}\right)\:{we}\:{have}\:{proved}\:{that}\:\:{xS}\left({x}\right)−{S}\left({x}+\mathrm{1}\right)=\frac{\mathrm{1}}{{e}}\:\Rightarrow \\ $$ $${x}\:{S}\left({x}\right)\:−{S}\left(\mathrm{1}\right)\sim\:\frac{\mathrm{1}}{{e}}\:\:\left({x}\rightarrow\mathrm{0}^{+} \right)\:\Rightarrow \\ $$ $${xS}\left({x}\right)\:−\mathrm{1}+\frac{\mathrm{1}}{{e}}\:\sim\:\frac{\mathrm{1}}{{e}}\:\Rightarrow\:{S}\left({x}\right)\sim\:\frac{\mathrm{1}}{{x}}\:\left({x}\rightarrow\mathrm{0}^{+} \right)\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com