Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 35363 by Rio Mike last updated on 18/May/18

Q_1 . A quadratic equation x^2 −3x+4=0  has roots α and β .without solving  a)write down the values of α^2 +β^2   b) find the quadratic equation  with integral coefficients,whose  roots are (1/α^2 ) and(1/β^2 )  Q_2 . the first term of a GP is 32   and the sum to infinity is 48.  find the common ratio and the 8^(th)   term of the progression

$${Q}_{\mathrm{1}} .\:{A}\:{quadratic}\:{equation}\:{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{4}=\mathrm{0} \\ $$$${has}\:{roots}\:\alpha\:{and}\:\beta\:.{without}\:{solving} \\ $$$$\left.{a}\right){write}\:{down}\:{the}\:{values}\:{of}\:\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \\ $$$$\left.{b}\right)\:{find}\:{the}\:{quadratic}\:{equation} \\ $$$${with}\:{integral}\:{coefficients},{whose} \\ $$$${roots}\:{are}\:\frac{\mathrm{1}}{\alpha^{\mathrm{2}} }\:{and}\frac{\mathrm{1}}{\beta^{\mathrm{2}} } \\ $$$${Q}_{\mathrm{2}} .\:{the}\:{first}\:{term}\:{of}\:{a}\:{GP}\:{is}\:\mathrm{32}\: \\ $$$${and}\:{the}\:{sum}\:{to}\:{infinity}\:{is}\:\mathrm{48}. \\ $$$${find}\:{the}\:{common}\:{ratio}\:{and}\:{the}\:\mathrm{8}^{{th}} \\ $$$${term}\:{of}\:{the}\:{progression} \\ $$

Answered by Rasheed.Sindhi last updated on 18/May/18

Q_1   α & β are the roots of x^2 −3x+4=0     α+β=((−(−3))/1)=3 , αβ=(4/1)=4  (a) α^2 +β^2 =(α+β)^2 −2αβ                 =(3)^2 −2(4)=9−8=1  (b) Thwe equation whose roots are (1/α^2 ) &(1/β^2 )  Sum-of-roots= (1/α^2 )+(1/β^2 )=((α^2 +β^2 )/((αβ)^2 ))                 =(1/((4)^2 ))=1/16  Product-of-roots= (1/α^2 )×(1/β^2 )=(1/((αβ)^2 ))                                   =(1/((4)^2 ))=(1/(16))   The new equation:     x^2 −(sum)x+product=0    x^2 −(1/16)x+(1/16)=0   16x^2 −x+1=0

$$\mathrm{Q}_{\mathrm{1}} \\ $$$$\alpha\:\&\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{4}=\mathrm{0} \\ $$$$\:\:\:\alpha+\beta=\frac{−\left(−\mathrm{3}\right)}{\mathrm{1}}=\mathrm{3}\:,\:\alpha\beta=\frac{\mathrm{4}}{\mathrm{1}}=\mathrm{4} \\ $$$$\left({a}\right)\:\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} =\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{2}\alpha\beta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(\mathrm{3}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{4}\right)=\mathrm{9}−\mathrm{8}=\mathrm{1} \\ $$$$\left({b}\right)\:\mathrm{Thwe}\:\mathrm{equation}\:\mathrm{whose}\:\mathrm{roots}\:\mathrm{are}\:\frac{\mathrm{1}}{\alpha^{\mathrm{2}} }\:\&\frac{\mathrm{1}}{\beta^{\mathrm{2}} } \\ $$$$\mathrm{Sum}-\mathrm{of}-\mathrm{roots}=\:\frac{\mathrm{1}}{\alpha^{\mathrm{2}} }+\frac{\mathrm{1}}{\beta^{\mathrm{2}} }=\frac{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }{\left(\alpha\beta\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\left(\mathrm{4}\right)^{\mathrm{2}} }=\mathrm{1}/\mathrm{16} \\ $$$$\mathrm{Product}-\mathrm{of}-\mathrm{roots}=\:\frac{\mathrm{1}}{\alpha^{\mathrm{2}} }×\frac{\mathrm{1}}{\beta^{\mathrm{2}} }=\frac{\mathrm{1}}{\left(\alpha\beta\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\left(\mathrm{4}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{16}} \\ $$$$\:\mathrm{The}\:\mathrm{new}\:\mathrm{equation}: \\ $$$$\:\:\:\mathrm{x}^{\mathrm{2}} −\left(\mathrm{sum}\right)\mathrm{x}+\mathrm{product}=\mathrm{0} \\ $$$$\:\:\mathrm{x}^{\mathrm{2}} −\left(\mathrm{1}/\mathrm{16}\right)\mathrm{x}+\left(\mathrm{1}/\mathrm{16}\right)=\mathrm{0} \\ $$$$\:\mathrm{16x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}=\mathrm{0} \\ $$

Commented by MJS last updated on 18/May/18

you′re typing faster than me ;−)

$$\left.\mathrm{you}'\mathrm{re}\:\mathrm{typing}\:\mathrm{faster}\:\mathrm{than}\:\mathrm{me}\:;−\right) \\ $$

Commented by Rasheed.Sindhi last updated on 18/May/18

Only for this time.Always you beat me!

$$\mathrm{Only}\:\mathrm{for}\:\mathrm{this}\:\mathrm{time}.\mathrm{Always}\:\mathrm{you}\:\mathrm{beat}\:\mathrm{me}! \\ $$

Answered by Rasheed.Sindhi last updated on 18/May/18

Q_2        a=32      S_∞ =(a/(1−r))=48               ((32)/(1−r))=48                32=48−48r                r=((48−32)/(48))=(1/3)         t_n =ar^(n−1)          t_8 =32×(1/3)^(8−1) =((32)/3^7 )=((32)/(2187))

$$\mathrm{Q}_{\mathrm{2}} \\ $$$$\:\:\:\:\:{a}=\mathrm{32} \\ $$$$\:\:\:\:{S}_{\infty} =\frac{{a}}{\mathrm{1}−{r}}=\mathrm{48} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{32}}{\mathrm{1}−{r}}=\mathrm{48} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{32}=\mathrm{48}−\mathrm{48}{r} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{r}=\frac{\mathrm{48}−\mathrm{32}}{\mathrm{48}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:{t}_{{n}} ={ar}^{{n}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:{t}_{\mathrm{8}} =\mathrm{32}×\left(\mathrm{1}/\mathrm{3}\right)^{\mathrm{8}−\mathrm{1}} =\frac{\mathrm{32}}{\mathrm{3}^{\mathrm{7}} }=\frac{\mathrm{32}}{\mathrm{2187}} \\ $$

Answered by MJS last updated on 18/May/18

(x−α)(x−β)=x^2 −(α+β)x+αβ  we know that αβ=4 and α+β=3 ⇒  α^2 +β^2 =(α+β)^2 −2αβ=3^2 −2×4=1  (x−(1/α^2 ))(x−(1/β^2 ))=x^2 −((α^2 +β^2 )/(α^2 β^2 ))x+(1/(α^2 β^2 ))=  =x^2 −(1/(16))x+(1/(16))  16x^2 −x+1=0

$$\left({x}−\alpha\right)\left({x}−\beta\right)={x}^{\mathrm{2}} −\left(\alpha+\beta\right){x}+\alpha\beta \\ $$$$\mathrm{we}\:\mathrm{know}\:\mathrm{that}\:\alpha\beta=\mathrm{4}\:\mathrm{and}\:\alpha+\beta=\mathrm{3}\:\Rightarrow \\ $$$$\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} =\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{2}\alpha\beta=\mathrm{3}^{\mathrm{2}} −\mathrm{2}×\mathrm{4}=\mathrm{1} \\ $$$$\left({x}−\frac{\mathrm{1}}{\alpha^{\mathrm{2}} }\right)\left({x}−\frac{\mathrm{1}}{\beta^{\mathrm{2}} }\right)={x}^{\mathrm{2}} −\frac{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }{\alpha^{\mathrm{2}} \beta^{\mathrm{2}} }{x}+\frac{\mathrm{1}}{\alpha^{\mathrm{2}} \beta^{\mathrm{2}} }= \\ $$$$={x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{16}}{x}+\frac{\mathrm{1}}{\mathrm{16}} \\ $$$$\mathrm{16}{x}^{\mathrm{2}} −{x}+\mathrm{1}=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com