Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36747 by prof Abdo imad last updated on 05/Jun/18

let f(x)= Σ_(n=1) ^∞    ((sin(nx))/n) x^n   1) prove that f is C^1  on ]−1,1[  2)calculate f^′ (x) and prove that  f(x)=arctan( ((xsinx)/(1−x cosx)))

$${let}\:{f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{sin}\left({nx}\right)}{{n}}\:{x}^{{n}} \\ $$$$\left.\mathrm{1}\left.\right)\:{prove}\:{that}\:{f}\:{is}\:{C}^{\mathrm{1}} \:{on}\:\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$$\left.\mathrm{2}\right){calculate}\:{f}^{'} \left({x}\right)\:{and}\:{prove}\:{that} \\ $$$${f}\left({x}\right)={arctan}\left(\:\frac{{xsinx}}{\mathrm{1}−{x}\:{cosx}}\right) \\ $$

Commented by prof Abdo imad last updated on 06/Jun/18

thefunction f_n (x) =((sin(nx))/n) x^n  are C^1  on]−1,1[  and f_n ^′ (x)= sin(nx)x^(n−1)  are continues on]−1,1[  also Σ f_n ^′ (x) converges unif. on]−1,1[  Σ f_n (x)conv.unif. f is C^1  on]−1,1[  2) we have f^′ (x)= Σ_(n=1) ^∞ sin(nx) x^(n−1)   =Im( Σ_(n=1) ^∞   e^(inx)  x^(n−1) ) but  Σ_(n=1) ^∞   e^(inx)  x^(n−1)  = Σ_(n=0) ^∞   e^(i(n+1)x)  x^n   = e^(ix)  Σ_(n=0) ^∞   (x e^(ix) )^n  =e^(ix)   (1/(1−xe^(ix) ))  =  (1/(e^(−ix)  −x)) = (1/(cosx −isinx −x))  =((cosx −x +isin(x))/((cosx −x)^2  +sin^2 x)) ⇒  f^′ (x) = ((sinx)/(1−2 x cosx +x^2 )) ⇒  f(x) = ∫       ((sinx)/(x^2  −2xcosx +1))dx +c....becontinued...

$$\left.{thefunction}\:{f}_{{n}} \left({x}\right)\:=\frac{{sin}\left({nx}\right)}{{n}}\:{x}^{{n}} \:{are}\:{C}^{\mathrm{1}} \:{on}\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$$\left.{and}\:{f}_{{n}} ^{'} \left({x}\right)=\:{sin}\left({nx}\right){x}^{{n}−\mathrm{1}} \:{are}\:{continues}\:{on}\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$$\left.{also}\:\Sigma\:{f}_{{n}} ^{'} \left({x}\right)\:{converges}\:{unif}.\:{on}\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$$\left.\Sigma\:{f}_{{n}} \left({x}\right){conv}.{unif}.\:{f}\:{is}\:{C}^{\mathrm{1}} \:{on}\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:{f}^{'} \left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} {sin}\left({nx}\right)\:{x}^{{n}−\mathrm{1}} \\ $$$$={Im}\left(\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{e}^{{inx}} \:{x}^{{n}−\mathrm{1}} \right)\:{but} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{e}^{{inx}} \:{x}^{{n}−\mathrm{1}} \:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{e}^{{i}\left({n}+\mathrm{1}\right){x}} \:{x}^{{n}} \\ $$$$=\:{e}^{{ix}} \:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left({x}\:{e}^{{ix}} \right)^{{n}} \:={e}^{{ix}} \:\:\frac{\mathrm{1}}{\mathrm{1}−{xe}^{{ix}} } \\ $$$$=\:\:\frac{\mathrm{1}}{{e}^{−{ix}} \:−{x}}\:=\:\frac{\mathrm{1}}{{cosx}\:−{isinx}\:−{x}} \\ $$$$=\frac{{cosx}\:−{x}\:+{isin}\left({x}\right)}{\left({cosx}\:−{x}\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} {x}}\:\Rightarrow \\ $$$${f}^{'} \left({x}\right)\:=\:\frac{{sinx}}{\mathrm{1}−\mathrm{2}\:{x}\:{cosx}\:+{x}^{\mathrm{2}} }\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\:\int\:\:\:\:\:\:\:\frac{{sinx}}{{x}^{\mathrm{2}} \:−\mathrm{2}{xcosx}\:+\mathrm{1}}{dx}\:+{c}....{becontinued}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com