Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 36880 by Tinkutara last updated on 06/Jun/18

Commented by ajfour last updated on 07/Jun/18

Commented by ajfour last updated on 07/Jun/18

2h=acos θ+bsin θ  2k=bcos θ+asin θ  ⇒ cos θ=((2(ah−bk))/(a^2 −b^2 ))       sin θ=((2(bh−ak))/(a^2 −b^2 ))  so locus eq. is  (ax−by)^2 +(bx−ay)^2 =(((a^2 −b^2 )^2 )/4) .  doesn′t match with options..?!

$$\mathrm{2}{h}={a}\mathrm{cos}\:\theta+{b}\mathrm{sin}\:\theta \\ $$$$\mathrm{2}{k}={b}\mathrm{cos}\:\theta+{a}\mathrm{sin}\:\theta \\ $$$$\Rightarrow\:\mathrm{cos}\:\theta=\frac{\mathrm{2}\left({ah}−{bk}\right)}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\mathrm{sin}\:\theta=\frac{\mathrm{2}\left({bh}−{ak}\right)}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$${so}\:{locus}\:{eq}.\:{is} \\ $$$$\left({ax}−{by}\right)^{\mathrm{2}} +\left({bx}−{ay}\right)^{\mathrm{2}} =\frac{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{4}}\:. \\ $$$${doesn}'{t}\:{match}\:{with}\:{options}..?! \\ $$

Commented by Tinkutara last updated on 08/Jun/18

Sir please explain first 2 lines.

Answered by tanmay.chaudhury50@gmail.com last updated on 06/Jun/18

let rod length a slide on axes .it slide at(x_1 ,0)   and (0,y_1 ) at any instant  so (x_1 −0)^2 +(0−y_1 )^2 =a^2   similarly  (x_2 )^2 +(y_2 )^2 =b^2   let the centre of circle is(h,k)  since  (x−h)^2 +(y−k)^2 =r^2  passes through..^   (x_1 ,0) ,(0,y_1 ),(x_2 ,0),(0,y_2 )  (x_1 −h)^2 +(0−k)^2 =r^2   (0−h)^2 +(y_1 −k)^2 =r^2   (x_2 −h)^2 +(0−k)^2 =r^2   (0−h)^2 +(y_2 −k)^2 =r^2   (x_1 −h)^2 =(x_2 −h)^2   x_1 ^2 −2hx_1 =x_2 ^2 −2hx_2   x_1 2−x_2 ^2  −2h(x_1 −x_2 )^ =0  (x_1 −x_2 )(x_1 +x_2 −2h)=0  h=((x_1 +x_2 )/2)  h^2 +(y_1 −k)^2  =h^2 +(y_2 −k)^(2 )   (y_1 −k)^2 −(y_2 −k)^2 =0  y_1 ^2 −2y_1 k−y_2 ^2  +2y_2 k=0  (y_1 +y_2 )(y_1 −y_2 )−2k(y_1 −y_2 )=0  k=((y_1 +y_2 )/2)  x_1 ^2  +y_1 ^(2 ) =a^2   x_2 ^2  +y_2 ^2  =b^2   (x_1 +x_2 )^2 =4h^2   x_1 ^2 +x_2 ^2 +2x_1 x_2 =4h^2   y_1 ^2 +y_2 ^2  +2y_1 y_2 =4k^2    a^2 +b^2 +2(x_1 x_2 +y_1 y_2 )=4(h^2 +k^2 )  contd

$${let}\:{rod}\:{length}\:\boldsymbol{{a}}\:{slide}\:{on}\:{axes}\:.{it}\:{slide}\:{at}\left({x}_{\mathrm{1}} ,\mathrm{0}\right)\: \\ $$$${and}\:\left(\mathrm{0},{y}_{\mathrm{1}} \right)\:{at}\:{any}\:{instant} \\ $$$${so}\:\left({x}_{\mathrm{1}} −\mathrm{0}\right)^{\mathrm{2}} +\left(\mathrm{0}−{y}_{\mathrm{1}} \right)^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$${similarly}\:\:\left({x}_{\mathrm{2}} \right)^{\mathrm{2}} +\left({y}_{\mathrm{2}} \right)^{\mathrm{2}} ={b}^{\mathrm{2}} \\ $$$${let}\:{the}\:{centre}\:{of}\:{circle}\:{is}\left({h},{k}\right) \\ $$$${since}\:\:\left({x}−{h}\right)^{\mathrm{2}} +\left({y}−{k}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \:{passes}\:{through}..^{} \\ $$$$\left({x}_{\mathrm{1}} ,\mathrm{0}\right)\:,\left(\mathrm{0},{y}_{\mathrm{1}} \right),\left({x}_{\mathrm{2}} ,\mathrm{0}\right),\left(\mathrm{0},{y}_{\mathrm{2}} \right) \\ $$$$\left({x}_{\mathrm{1}} −{h}\right)^{\mathrm{2}} +\left(\mathrm{0}−{k}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\left(\mathrm{0}−{h}\right)^{\mathrm{2}} +\left({y}_{\mathrm{1}} −{k}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\left({x}_{\mathrm{2}} −{h}\right)^{\mathrm{2}} +\left(\mathrm{0}−{k}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\left(\mathrm{0}−{h}\right)^{\mathrm{2}} +\left({y}_{\mathrm{2}} −{k}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\left({x}_{\mathrm{1}} −{h}\right)^{\mathrm{2}} =\left({x}_{\mathrm{2}} −{h}\right)^{\mathrm{2}} \\ $$$${x}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}{hx}_{\mathrm{1}} ={x}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{2}{hx}_{\mathrm{2}} \\ $$$${x}_{\mathrm{1}} \mathrm{2}−{x}_{\mathrm{2}} ^{\mathrm{2}} \:−\mathrm{2}{h}\left({x}_{\mathrm{1}} −{x}_{\mathrm{2}} \overset{} {\right)}=\mathrm{0} \\ $$$$\left({x}_{\mathrm{1}} −{x}_{\mathrm{2}} \right)\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} −\mathrm{2}{h}\right)=\mathrm{0} \\ $$$${h}=\frac{{x}_{\mathrm{1}} +{x}_{\mathrm{2}} }{\mathrm{2}} \\ $$$${h}^{\mathrm{2}} +\left({y}_{\mathrm{1}} −{k}\right)^{\mathrm{2}} \:={h}^{\mathrm{2}} +\left({y}_{\mathrm{2}} −{k}\right)^{\mathrm{2}\:} \\ $$$$\left({y}_{\mathrm{1}} −{k}\right)^{\mathrm{2}} −\left({y}_{\mathrm{2}} −{k}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${y}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}{y}_{\mathrm{1}} {k}−{y}_{\mathrm{2}} ^{\mathrm{2}} \:+\mathrm{2}{y}_{\mathrm{2}} {k}=\mathrm{0} \\ $$$$\left({y}_{\mathrm{1}} +{y}_{\mathrm{2}} \right)\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)−\mathrm{2}{k}\left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)=\mathrm{0} \\ $$$${k}=\frac{{y}_{\mathrm{1}} +{y}_{\mathrm{2}} }{\mathrm{2}} \\ $$$${x}_{\mathrm{1}} ^{\mathrm{2}} \:+{y}_{\mathrm{1}} ^{\mathrm{2}\:} ={a}^{\mathrm{2}} \\ $$$${x}_{\mathrm{2}} ^{\mathrm{2}} \:+{y}_{\mathrm{2}} ^{\mathrm{2}} \:={b}^{\mathrm{2}} \\ $$$$\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{4}{h}^{\mathrm{2}} \\ $$$${x}_{\mathrm{1}} ^{\mathrm{2}} +{x}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{2}{x}_{\mathrm{1}} {x}_{\mathrm{2}} =\mathrm{4}{h}^{\mathrm{2}} \\ $$$${y}_{\mathrm{1}} ^{\mathrm{2}} +{y}_{\mathrm{2}} ^{\mathrm{2}} \:+\mathrm{2}{y}_{\mathrm{1}} {y}_{\mathrm{2}} =\mathrm{4}{k}^{\mathrm{2}} \: \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}\left({x}_{\mathrm{1}} {x}_{\mathrm{2}} +{y}_{\mathrm{1}} {y}_{\mathrm{2}} \right)=\mathrm{4}\left({h}^{\mathrm{2}} +{k}^{\mathrm{2}} \right) \\ $$$${contd} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com