Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37517 by ajfour last updated on 14/Jun/18

Commented by ajfour last updated on 14/Jun/18

Find volume of the region   common to the two spheres.  (The center of smaller sphere is  on the surface of the bigger  sphere).

$${Find}\:{volume}\:{of}\:{the}\:{region}\: \\ $$$${common}\:{to}\:{the}\:{two}\:{spheres}. \\ $$$$\left({The}\:{center}\:{of}\:{smaller}\:{sphere}\:{is}\right. \\ $$$${on}\:{the}\:{surface}\:{of}\:{the}\:{bigger} \\ $$$$\left.{sphere}\right). \\ $$

Commented by MrW3 last updated on 14/Jun/18

r^2 −h_1 ^2 =R^2 −(R−h_1 )^2   r^2 −h_1 ^2 =R^2 −R^2 +2Rh_1 −h_1 ^2   r^2 =2Rh_1   ⇒h_1 =(r^2 /(2R))  ⇒h_2 =r−h_1 =r−(r^2 /(2R))  cap 1: V_1 =πh_1 ^2 (R−(h_1 /3))=((πr^4 )/(4R))(1−(r^2 /(6R^2 )))  cap 2: V_2 =πh_2 ^2 (r−(h_2 /3))=((2πr^3 )/3)(1−(r/(2R)))^2 (1+(r/(4R)))  ⇒V=πr^3 [(r/(4R))(1−(r^2 /(6R^2 )))+(2/3)(1−(r/(2R)))^2 (1+(r/(4R)))]

$${r}^{\mathrm{2}} −{h}_{\mathrm{1}} ^{\mathrm{2}} ={R}^{\mathrm{2}} −\left({R}−{h}_{\mathrm{1}} \right)^{\mathrm{2}} \\ $$$${r}^{\mathrm{2}} −{h}_{\mathrm{1}} ^{\mathrm{2}} ={R}^{\mathrm{2}} −{R}^{\mathrm{2}} +\mathrm{2}{Rh}_{\mathrm{1}} −{h}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$${r}^{\mathrm{2}} =\mathrm{2}{Rh}_{\mathrm{1}} \\ $$$$\Rightarrow{h}_{\mathrm{1}} =\frac{{r}^{\mathrm{2}} }{\mathrm{2}{R}} \\ $$$$\Rightarrow{h}_{\mathrm{2}} ={r}−{h}_{\mathrm{1}} ={r}−\frac{{r}^{\mathrm{2}} }{\mathrm{2}{R}} \\ $$$${cap}\:\mathrm{1}:\:{V}_{\mathrm{1}} =\pi{h}_{\mathrm{1}} ^{\mathrm{2}} \left({R}−\frac{{h}_{\mathrm{1}} }{\mathrm{3}}\right)=\frac{\pi{r}^{\mathrm{4}} }{\mathrm{4}{R}}\left(\mathrm{1}−\frac{{r}^{\mathrm{2}} }{\mathrm{6}{R}^{\mathrm{2}} }\right) \\ $$$${cap}\:\mathrm{2}:\:{V}_{\mathrm{2}} =\pi{h}_{\mathrm{2}} ^{\mathrm{2}} \left({r}−\frac{{h}_{\mathrm{2}} }{\mathrm{3}}\right)=\frac{\mathrm{2}\pi{r}^{\mathrm{3}} }{\mathrm{3}}\left(\mathrm{1}−\frac{{r}}{\mathrm{2}{R}}\right)^{\mathrm{2}} \left(\mathrm{1}+\frac{{r}}{\mathrm{4}{R}}\right) \\ $$$$\Rightarrow{V}=\pi{r}^{\mathrm{3}} \left[\frac{{r}}{\mathrm{4}{R}}\left(\mathrm{1}−\frac{{r}^{\mathrm{2}} }{\mathrm{6}{R}^{\mathrm{2}} }\right)+\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}−\frac{{r}}{\mathrm{2}{R}}\right)^{\mathrm{2}} \left(\mathrm{1}+\frac{{r}}{\mathrm{4}{R}}\right)\right] \\ $$

Commented by ajfour last updated on 14/Jun/18

very brilliant Sir!   whats the concept of the   formula for cap volumes?

$${very}\:{brilliant}\:{Sir}!\: \\ $$$${whats}\:{the}\:{concept}\:{of}\:{the}\: \\ $$$${formula}\:{for}\:{cap}\:{volumes}? \\ $$

Commented by MrW3 last updated on 14/Jun/18

Commented by MrW3 last updated on 14/Jun/18

Answered by ajfour last updated on 14/Jun/18

let center of larger sphere be  origin and z axis vertically  upwards.  eq. of larger sphere    x^2 +y^2 +z^2 =R^2   eq. of smaller sphere     x^2 +y^2 +(z−R)^2 =r^2   If radius of  circle of intersection  be ρ_0 ,      z_(common) =(√(R^2 −ρ_0 ^2 )) =R−(√(r^2 −ρ_0 ^2 ))   ⇒ R^2 −ρ_0 ^2 =R^2 +r^2 −ρ_0 ^2 −2R(√(r^2 −ρ_0 ^2 ))  ⇒ (√(r^2 −ρ_0 ^2  ))= (r^2 /(2R))    ...(i)  and      (√(R^2 −ρ_0 ^2 )) =R−(r^2 /(2R))    ...(ii)         ρ_0 ^2  = r^2 −(r^4 /(4R^2 ))        ...(iii)  dV=(z_l −z_s )ρdρdθ       ρ =(√(x^2 +y^2 ))  ∫_0 ^(  V_(common) ) dV =2π∫_0 ^(  ρ_0 ) ((√(R^2 −ρ^2 ))−R+(√(r^2 −ρ^2 )) )ρdρ  let   s=ρ^2    V_(common) =π∫_0 ^(  ρ_0 ^2 ) ((√(R^2 −s)) −R+(√(r^2 −s)) )ds   =π{−ρ_0 ^2 R−(2/3)[(R^2 −ρ_0 ^2 )^(3/2) −R^3 ]                   −(2/3)[(r^2 −ρ_0 ^2 )^(3/2) −r^3 ]}   using  (i), (ii), (iii)  V=π{−r^2 R+(r^4 /(4R))−(2/3)(R−(r^2 /(2R)))^3                +(2/3)R^3 −(2/3)((r^2 /(2R)))^3 +(2/3)r^3 } .

$${let}\:{center}\:{of}\:{larger}\:{sphere}\:{be} \\ $$$${origin}\:{and}\:{z}\:{axis}\:{vertically} \\ $$$${upwards}. \\ $$$${eq}.\:{of}\:{larger}\:{sphere} \\ $$$$\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${eq}.\:{of}\:{smaller}\:{sphere} \\ $$$$\:\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\left({z}−{R}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${If}\:{radius}\:{of}\:\:{circle}\:{of}\:{intersection} \\ $$$${be}\:\rho_{\mathrm{0}} , \\ $$$$\:\:\:\:{z}_{{common}} =\sqrt{{R}^{\mathrm{2}} −\rho_{\mathrm{0}} ^{\mathrm{2}} }\:={R}−\sqrt{{r}^{\mathrm{2}} −\rho_{\mathrm{0}} ^{\mathrm{2}} }\: \\ $$$$\Rightarrow\:{R}^{\mathrm{2}} −\rho_{\mathrm{0}} ^{\mathrm{2}} ={R}^{\mathrm{2}} +{r}^{\mathrm{2}} −\rho_{\mathrm{0}} ^{\mathrm{2}} −\mathrm{2}{R}\sqrt{{r}^{\mathrm{2}} −\rho_{\mathrm{0}} ^{\mathrm{2}} } \\ $$$$\Rightarrow\:\sqrt{{r}^{\mathrm{2}} −\rho_{\mathrm{0}} ^{\mathrm{2}} \:}=\:\frac{{r}^{\mathrm{2}} }{\mathrm{2}{R}}\:\:\:\:...\left({i}\right) \\ $$$${and}\:\:\:\:\:\:\sqrt{{R}^{\mathrm{2}} −\rho_{\mathrm{0}} ^{\mathrm{2}} }\:={R}−\frac{{r}^{\mathrm{2}} }{\mathrm{2}{R}}\:\:\:\:...\left({ii}\right) \\ $$$$\:\:\:\:\:\:\:\rho_{\mathrm{0}} ^{\mathrm{2}} \:=\:{r}^{\mathrm{2}} −\frac{{r}^{\mathrm{4}} }{\mathrm{4}{R}^{\mathrm{2}} }\:\:\:\:\:\:\:\:...\left({iii}\right) \\ $$$${dV}=\left({z}_{{l}} −{z}_{{s}} \right)\rho{d}\rho{d}\theta \\ $$$$\:\:\:\:\:\rho\:=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$\int_{\mathrm{0}} ^{\:\:{V}_{{common}} } {dV}\:=\mathrm{2}\pi\int_{\mathrm{0}} ^{\:\:\rho_{\mathrm{0}} } \left(\sqrt{{R}^{\mathrm{2}} −\rho^{\mathrm{2}} }−{R}+\sqrt{{r}^{\mathrm{2}} −\rho^{\mathrm{2}} }\:\right)\rho{d}\rho \\ $$$${let}\:\:\:{s}=\rho^{\mathrm{2}} \\ $$$$\:{V}_{{common}} =\pi\int_{\mathrm{0}} ^{\:\:\rho_{\mathrm{0}} ^{\mathrm{2}} } \left(\sqrt{{R}^{\mathrm{2}} −{s}}\:−{R}+\sqrt{{r}^{\mathrm{2}} −{s}}\:\right){ds} \\ $$$$\:=\pi\left\{−\rho_{\mathrm{0}} ^{\mathrm{2}} {R}−\frac{\mathrm{2}}{\mathrm{3}}\left[\left({R}^{\mathrm{2}} −\rho_{\mathrm{0}} ^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} −{R}^{\mathrm{3}} \right]\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\frac{\mathrm{2}}{\mathrm{3}}\left[\left({r}^{\mathrm{2}} −\rho_{\mathrm{0}} ^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} −{r}^{\mathrm{3}} \right]\right\}\: \\ $$$${using}\:\:\left({i}\right),\:\left({ii}\right),\:\left({iii}\right) \\ $$$${V}=\pi\left\{−{r}^{\mathrm{2}} {R}+\frac{{r}^{\mathrm{4}} }{\mathrm{4}{R}}−\frac{\mathrm{2}}{\mathrm{3}}\left({R}−\frac{{r}^{\mathrm{2}} }{\mathrm{2}{R}}\right)^{\mathrm{3}} \right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{\mathrm{2}}{\mathrm{3}}{R}^{\mathrm{3}} −\frac{\mathrm{2}}{\mathrm{3}}\left(\frac{{r}^{\mathrm{2}} }{\mathrm{2}{R}}\right)^{\mathrm{3}} +\frac{\mathrm{2}}{\mathrm{3}}{r}^{\mathrm{3}} \right\}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com