Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 3794 by Filup last updated on 21/Dec/15

prove or disprove:     Σ_(i=1) ^n p_1 i=p_2   p_1 ,p_2 ∈P    (1/2)np_1 (n+1)=p_2   (1/2)n(n+1)=(p_2 /p_1 )  n^2 +n=(2/p_1 )p_2     p_i ≠a_1 a_2 ...a_n      a_i ≠1  ∴(2/p_1 )∉Z   p_1 ≠0    n∈Z  n^2 +n−k=0  k=(2/p_1 )p_2   ∴n=((−1±(√(1+4k)))/2)  ∴n=((−1±(√(1+(8/p_1 )p_2 )))/2)  ∴n∉Z    ∴Σ_(i=1) ^n p_1 i≠p_2     Is this correct? Or am I wrong?

$$\mathrm{prove}\:\mathrm{or}\:\mathrm{disprove}:\:\:\:\:\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{p}_{\mathrm{1}} {i}={p}_{\mathrm{2}} \\ $$$${p}_{\mathrm{1}} ,{p}_{\mathrm{2}} \in\mathbb{P} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{np}_{\mathrm{1}} \left({n}+\mathrm{1}\right)={p}_{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{n}\left({n}+\mathrm{1}\right)=\frac{{p}_{\mathrm{2}} }{{p}_{\mathrm{1}} } \\ $$$${n}^{\mathrm{2}} +{n}=\frac{\mathrm{2}}{{p}_{\mathrm{1}} }{p}_{\mathrm{2}} \\ $$$$ \\ $$$${p}_{{i}} \neq{a}_{\mathrm{1}} {a}_{\mathrm{2}} ...{a}_{{n}} \:\:\:\:\:{a}_{{i}} \neq\mathrm{1} \\ $$$$\therefore\frac{\mathrm{2}}{{p}_{\mathrm{1}} }\notin\mathbb{Z}\:\:\:{p}_{\mathrm{1}} \neq\mathrm{0} \\ $$$$ \\ $$$${n}\in\mathbb{Z} \\ $$$${n}^{\mathrm{2}} +{n}−{k}=\mathrm{0} \\ $$$${k}=\frac{\mathrm{2}}{{p}_{\mathrm{1}} }{p}_{\mathrm{2}} \\ $$$$\therefore{n}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}{k}}}{\mathrm{2}} \\ $$$$\therefore{n}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}+\frac{\mathrm{8}}{{p}_{\mathrm{1}} }{p}_{\mathrm{2}} }}{\mathrm{2}} \\ $$$$\therefore{n}\notin\mathbb{Z} \\ $$$$ \\ $$$$\therefore\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{p}_{\mathrm{1}} {i}\neq{p}_{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Is}\:\mathrm{this}\:\mathrm{correct}?\:\mathrm{Or}\:\mathrm{am}\:\mathrm{I}\:\mathrm{wrong}? \\ $$

Commented by prakash jain last updated on 21/Dec/15

Σ_(i=1) ^n p_1 i=X=((n(n+1)p_1 )/2)  p_1  divides X and  ((n(n+1))/2)  is  an integer(>1 for n>1) divides X.  So X∉P for n>1.

$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{p}_{\mathrm{1}} {i}={X}=\frac{{n}\left({n}+\mathrm{1}\right){p}_{\mathrm{1}} }{\mathrm{2}} \\ $$$${p}_{\mathrm{1}} \:\mathrm{divides}\:\mathrm{X}\:\mathrm{and}\:\:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\:\:\mathrm{is} \\ $$$$\mathrm{an}\:\mathrm{integer}\left(>\mathrm{1}\:\mathrm{for}\:{n}>\mathrm{1}\right)\:\mathrm{divides}\:\mathrm{X}. \\ $$$$\mathrm{So}\:\mathrm{X}\notin\mathbb{P}\:\mathrm{for}\:{n}>\mathrm{1}. \\ $$

Commented by prakash jain last updated on 21/Dec/15

Your rational is also correct since if  ((n(n+1))/2)p_1  is a prime than n is not an integer.  so ((n(n+1))/2)p_1 ∉P for ∀n∈N and n>1

$$\mathrm{Your}\:\mathrm{rational}\:\mathrm{is}\:\mathrm{also}\:\mathrm{correct}\:\mathrm{since}\:\mathrm{if} \\ $$$$\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}{p}_{\mathrm{1}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{than}\:{n}\:\mathrm{is}\:\mathrm{not}\:\mathrm{an}\:\mathrm{integer}. \\ $$$$\mathrm{so}\:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}{p}_{\mathrm{1}} \notin\mathbb{P}\:\mathrm{for}\:\forall{n}\in\mathbb{N}\:\mathrm{and}\:{n}>\mathrm{1} \\ $$

Commented by Yozzii last updated on 21/Dec/15

s=Σ_(i=1) ^n i gives triangular numbers and   hence s∈N. Now, p_2 ∈P and p_1 ∈P.  Therefore, sp_1 =p_2  is true iff s=1  and p_1 =p_2 . Otherwise, sp_1 ≠p_2  since  p_2 =p_1 s is suggestive of p_2 ∉P if s>1   or the given equation is an inequation  if p_1 ≠p_2  and s≥1.

$${s}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{i}\:{gives}\:{triangular}\:{numbers}\:{and}\: \\ $$$${hence}\:{s}\in\mathbb{N}.\:{Now},\:{p}_{\mathrm{2}} \in\mathbb{P}\:{and}\:{p}_{\mathrm{1}} \in\mathbb{P}. \\ $$$${Therefore},\:{sp}_{\mathrm{1}} ={p}_{\mathrm{2}} \:{is}\:{true}\:{iff}\:{s}=\mathrm{1} \\ $$$${and}\:{p}_{\mathrm{1}} ={p}_{\mathrm{2}} .\:{Otherwise},\:{sp}_{\mathrm{1}} \neq{p}_{\mathrm{2}} \:{since} \\ $$$${p}_{\mathrm{2}} ={p}_{\mathrm{1}} {s}\:{is}\:{suggestive}\:{of}\:{p}_{\mathrm{2}} \notin\mathbb{P}\:{if}\:{s}>\mathrm{1}\: \\ $$$${or}\:{the}\:{given}\:{equation}\:{is}\:{an}\:{inequation} \\ $$$${if}\:{p}_{\mathrm{1}} \neq{p}_{\mathrm{2}} \:{and}\:{s}\geqslant\mathrm{1}. \\ $$$$ \\ $$

Commented by Yozzii last updated on 21/Dec/15

If p_1 =p_2 ,  n=((−1±(√9))/2)=((±3−1)/2)=1,−2  n∈N⇒n=1 only.  This should be added to the proof  I think.

$${If}\:{p}_{\mathrm{1}} ={p}_{\mathrm{2}} , \\ $$$${n}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{9}}}{\mathrm{2}}=\frac{\pm\mathrm{3}−\mathrm{1}}{\mathrm{2}}=\mathrm{1},−\mathrm{2} \\ $$$${n}\in\mathbb{N}\Rightarrow{n}=\mathrm{1}\:{only}. \\ $$$${This}\:{should}\:{be}\:{added}\:{to}\:{the}\:{proof} \\ $$$${I}\:{think}. \\ $$

Commented by Filup last updated on 21/Dec/15

Thank you!

$$\mathrm{Thank}\:\mathrm{you}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com