Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 39369 by maxmathsup by imad last updated on 05/Jul/18

1) calculate F(x)= ∫_1 ^(√x)    ((arctan(t))/t^2 )dt   with x≥1  2) calculate   A_n = ∫_1 ^(√n)   ((arctan(t))/t^2 ) dt  and find lim_(n→+∞)  A_n

$$\left.\mathrm{1}\right)\:{calculate}\:{F}\left({x}\right)=\:\int_{\mathrm{1}} ^{\sqrt{{x}}} \:\:\:\frac{{arctan}\left({t}\right)}{{t}^{\mathrm{2}} }{dt}\:\:\:{with}\:{x}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\:{A}_{{n}} =\:\int_{\mathrm{1}} ^{\sqrt{{n}}} \:\:\frac{{arctan}\left({t}\right)}{{t}^{\mathrm{2}} }\:{dt}\:\:{and}\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$

Commented by math khazana by abdo last updated on 07/Jul/18

1) by parts F(x) =[−(1/t) arctant]_1 ^(√x)  −∫_1 ^(√x) ((−1)/(t(1+t^2 )))dt  =(π/4) −((arctan((√x)))/(√x)) + ∫_1 ^(√x) ( (1/t) −(t/(1+t^2 )))dt  =(π/4) −((arctan((√x)))/(√x))  +ln((√x)) −(1/2)[ln(1+t^2 )]_1 ^(√x)   =(π/4) −((arctan((√x)))/(√x)) +ln((√x)) −(1/2){ln(1+x)−ln(2)}  2) we have A_n =F(n)  =(π/4) −((arctan((√n)))/(√n)) + ln((√n)) −ln(√(1+n)) +((ln(2))/2)  =(π/4) +((ln(2))/2)  +ln(((√n)/(√(n+1)))) −((arctan((√(n))))/(√n)) ⇒  lim_(n→+∞)  A_n =(π/4) +((ln(2))/2) .

$$\left.\mathrm{1}\right)\:{by}\:{parts}\:{F}\left({x}\right)\:=\left[−\frac{\mathrm{1}}{{t}}\:{arctant}\right]_{\mathrm{1}} ^{\sqrt{{x}}} \:−\int_{\mathrm{1}} ^{\sqrt{{x}}} \frac{−\mathrm{1}}{{t}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt} \\ $$$$=\frac{\pi}{\mathrm{4}}\:−\frac{{arctan}\left(\sqrt{{x}}\right)}{\sqrt{{x}}}\:+\:\int_{\mathrm{1}} ^{\sqrt{{x}}} \left(\:\frac{\mathrm{1}}{{t}}\:−\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right){dt} \\ $$$$=\frac{\pi}{\mathrm{4}}\:−\frac{{arctan}\left(\sqrt{{x}}\right)}{\sqrt{{x}}}\:\:+{ln}\left(\sqrt{{x}}\right)\:−\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right]_{\mathrm{1}} ^{\sqrt{{x}}} \\ $$$$=\frac{\pi}{\mathrm{4}}\:−\frac{{arctan}\left(\sqrt{{x}}\right)}{\sqrt{{x}}}\:+{ln}\left(\sqrt{{x}}\right)\:−\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\left(\mathrm{1}+{x}\right)−{ln}\left(\mathrm{2}\right)\right\} \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:{A}_{{n}} ={F}\left({n}\right) \\ $$$$=\frac{\pi}{\mathrm{4}}\:−\frac{{arctan}\left(\sqrt{{n}}\right)}{\sqrt{{n}}}\:+\:{ln}\left(\sqrt{{n}}\right)\:−{ln}\sqrt{\mathrm{1}+{n}}\:+\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}} \\ $$$$=\frac{\pi}{\mathrm{4}}\:+\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}}\:\:+{ln}\left(\frac{\sqrt{{n}}}{\sqrt{{n}+\mathrm{1}}}\right)\:−\frac{{arctan}\left(\sqrt{\left.{n}\right)}\right.}{\sqrt{{n}}}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} =\frac{\pi}{\mathrm{4}}\:+\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com