Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 39458 by MJS last updated on 06/Jul/18

find the greatest possible square insribed in  a triangle with sides a b c

$$\mathrm{find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{possible}\:\mathrm{square}\:\mathrm{insribed}\:\mathrm{in} \\ $$$$\mathrm{a}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{sides}\:{a}\:{b}\:{c} \\ $$

Commented by MJS last updated on 06/Jul/18

the side s of the square not necessarily on  one of the sides of the triangle

$$\mathrm{the}\:\mathrm{side}\:{s}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}\:\mathrm{not}\:\mathrm{necessarily}\:\mathrm{on} \\ $$$$\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle} \\ $$

Commented by ajfour last updated on 06/Jul/18

In △PCR       ((s(√2))/(sin γ)) = ((b−y)/(sin (θ+(π/4))))        ....(i)  In △SRA        (s/(sin α)) = (y/(sin (β−θ)))       .....(ii)  eliminating y amongst (i), (ii)      ((s(√2)sin (θ+(π/4)))/(sin γ)) =b− ((s sin (β−θ))/(sin α))  ⇒  s=(b/((((√2)sin (𝛉+(𝛑/4)))/(sin 𝛄))+((sin (𝛃−𝛉))/(sin 𝛂))))      =(b/(((sin θ+cos θ)/(sin γ))+((sin βcos θ−cos βsin θ)/(sin α))))  =((bsin γ sin α)/(sin θ(sin α−cos β sin γ)+cos θ(sin α+sin β sin γ)))         s=((bsin γ sin α)/(Asin (θ+φ)))  where     tan 𝛗 = ((sin α+sin β sin γ)/(sin α−cos β sin γ))   A=(√((sin α−cos β sin γ)^2 +(sin α+sin β sin γ)^2 ))  for s to be maximum      sin (θ+φ) has to be minimum.  For many of the cases(though  not all),      sin (θ+φ) is minimum if θ=0  Then        s_(max)  = ((bsin 𝛄 sin 𝛂)/(Asin 𝛗))            = ((bsin γ sin α)/(sin α+sin β sin γ))  and since        ((sin α)/a)= ((sin β)/b) = ((sin γ)/c) = (1/(2R))     s_(max) =  ((abc)/(2aR+bc)) = (a/(((2aR)/(bc))+1)) .   This formula will have to be  amended if sin (θ+φ)< sin φ  for nonzero θ .

$${In}\:\bigtriangleup{PCR} \\ $$$$\:\:\:\:\:\frac{{s}\sqrt{\mathrm{2}}}{\mathrm{sin}\:\gamma}\:=\:\frac{{b}−{y}}{\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{4}}\right)}\:\:\:\:\:\:\:\:....\left({i}\right) \\ $$$${In}\:\bigtriangleup{SRA} \\ $$$$\:\:\:\:\:\:\frac{{s}}{\mathrm{sin}\:\alpha}\:=\:\frac{{y}}{\mathrm{sin}\:\left(\beta−\theta\right)}\:\:\:\:\:\:\:.....\left({ii}\right) \\ $$$${eliminating}\:{y}\:{amongst}\:\left({i}\right),\:\left({ii}\right) \\ $$$$\:\:\:\:\frac{{s}\sqrt{\mathrm{2}}\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{4}}\right)}{\mathrm{sin}\:\gamma}\:={b}−\:\frac{{s}\:\mathrm{sin}\:\left(\beta−\theta\right)}{\mathrm{sin}\:\alpha} \\ $$$$\Rightarrow\:\:\boldsymbol{{s}}=\frac{\boldsymbol{{b}}}{\frac{\sqrt{\mathrm{2}}\mathrm{sin}\:\left(\boldsymbol{\theta}+\frac{\boldsymbol{\pi}}{\mathrm{4}}\right)}{\mathrm{sin}\:\boldsymbol{\gamma}}+\frac{\mathrm{sin}\:\left(\boldsymbol{\beta}−\boldsymbol{\theta}\right)}{\mathrm{sin}\:\boldsymbol{\alpha}}} \\ $$$$\:\:\:\:=\frac{{b}}{\frac{\mathrm{sin}\:\theta+\mathrm{cos}\:\theta}{\mathrm{sin}\:\gamma}+\frac{\mathrm{sin}\:\beta\mathrm{cos}\:\theta−\mathrm{cos}\:\beta\mathrm{sin}\:\theta}{\mathrm{sin}\:\alpha}} \\ $$$$=\frac{{b}\mathrm{sin}\:\gamma\:\mathrm{sin}\:\alpha}{\mathrm{sin}\:\theta\left(\mathrm{sin}\:\alpha−\mathrm{cos}\:\beta\:\mathrm{sin}\:\gamma\right)+\mathrm{cos}\:\theta\left(\mathrm{sin}\:\alpha+\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma\right)} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{s}}=\frac{{b}\mathrm{sin}\:\gamma\:\mathrm{sin}\:\alpha}{{A}\mathrm{sin}\:\left(\theta+\phi\right)} \\ $$$$\boldsymbol{{where}}\: \\ $$$$\:\:\mathrm{tan}\:\boldsymbol{\phi}\:=\:\frac{\mathrm{sin}\:\alpha+\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma}{\mathrm{sin}\:\alpha−\mathrm{cos}\:\beta\:\mathrm{sin}\:\gamma} \\ $$$$\:\boldsymbol{{A}}=\sqrt{\left(\mathrm{sin}\:\alpha−\mathrm{cos}\:\beta\:\mathrm{sin}\:\gamma\right)^{\mathrm{2}} +\left(\mathrm{sin}\:\alpha+\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma\right)^{\mathrm{2}} } \\ $$$${for}\:{s}\:{to}\:{be}\:{maximum} \\ $$$$\:\:\:\:\mathrm{sin}\:\left(\theta+\phi\right)\:{has}\:{to}\:{be}\:{minimum}. \\ $$$${For}\:{many}\:{of}\:{the}\:{cases}\left({though}\right. \\ $$$$\left.{not}\:{all}\right), \\ $$$$\:\:\:\:\mathrm{sin}\:\left(\theta+\phi\right)\:{is}\:{minimum}\:{if}\:\theta=\mathrm{0} \\ $$$${Then} \\ $$$$\:\:\:\:\:\:\boldsymbol{{s}}_{{max}} \:=\:\frac{\boldsymbol{{b}}\mathrm{sin}\:\boldsymbol{\gamma}\:\mathrm{sin}\:\boldsymbol{\alpha}}{{A}\mathrm{sin}\:\boldsymbol{\phi}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\frac{{b}\mathrm{sin}\:\gamma\:\mathrm{sin}\:\alpha}{\mathrm{sin}\:\alpha+\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma} \\ $$$${and}\:{since}\: \\ $$$$\:\:\:\:\:\frac{\mathrm{sin}\:\alpha}{{a}}=\:\frac{\mathrm{sin}\:\beta}{{b}}\:=\:\frac{\mathrm{sin}\:\gamma}{{c}}\:=\:\frac{\mathrm{1}}{\mathrm{2}{R}} \\ $$$$\:\:\:\boldsymbol{{s}}_{{max}} =\:\:\frac{{abc}}{\mathrm{2}{aR}+{bc}}\:=\:\frac{{a}}{\frac{\mathrm{2}{aR}}{{bc}}+\mathrm{1}}\:. \\ $$$$\:{This}\:{formula}\:{will}\:{have}\:{to}\:{be} \\ $$$${amended}\:{if}\:\mathrm{sin}\:\left(\theta+\phi\right)<\:\mathrm{sin}\:\phi \\ $$$${for}\:{nonzero}\:\theta\:. \\ $$

Commented by ajfour last updated on 06/Jul/18

Commented by MJS last updated on 06/Jul/18

thanks. I already thought there would be  several different cases...

$$\mathrm{thanks}.\:\mathrm{I}\:\mathrm{already}\:\mathrm{thought}\:\mathrm{there}\:\mathrm{would}\:\mathrm{be} \\ $$$$\mathrm{several}\:\mathrm{different}\:\mathrm{cases}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com