Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 39517 by math khazana by abdo last updated on 07/Jul/18

find radius of  S(x)=Σ_(n=1) ^∞   (x^n /n^2 )  and calculate its sum  2) find Σ_(n=1) ^∞  (1/n^2 )   and  Σ_(n=1) ^∞    (1/(n^2  2^n )) .

$${find}\:{radius}\:{of}\:\:{S}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{x}^{{n}} }{{n}^{\mathrm{2}} } \\ $$$${and}\:{calculate}\:{its}\:{sum} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:\:{and}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:\mathrm{2}^{{n}} }\:. \\ $$$$ \\ $$

Commented by abdo mathsup 649 cc last updated on 07/Jul/18

for x≠0  ∣ ((u_(n+1) (x))/(u_n (x)))∣ =∣ ((x^(n+1) /((n+1)^2 ))/(x^n /n^2 ))∣=(n^2 /((n+1)^2 )) ∣x∣→∣x∣  so if ∣x∣<1  the serie converges  if x=−1  Σ (((−1)^n )/n^2 ) converges(alternate serie)  if x=1  Σ (1/n^2 )  is a reiman serie convergent  and R=1  we have  (dS/dx)(x)= Σ_(n=1) ^∞  ((nx^(n−1) )/n^2 ) =(1/x)Σ_(n=1) ^∞  (x^n /n)  =−((ln(1−x))/x)  (  we suppose that x≠0) ⇒  S(x) = −∫_0 ^x   ((ln(1−t))/t) dt +c  c=S(0)=0 ⇒ S(x)=−∫_0 ^x  ((ln(1−t))/t) dt .

$${for}\:{x}\neq\mathrm{0}\:\:\mid\:\frac{{u}_{{n}+\mathrm{1}} \left({x}\right)}{{u}_{{n}} \left({x}\right)}\mid\:=\mid\:\frac{\frac{{x}^{{n}+\mathrm{1}} }{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }}{\frac{{x}^{{n}} }{{n}^{\mathrm{2}} }}\mid=\frac{{n}^{\mathrm{2}} }{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\mid{x}\mid\rightarrow\mid{x}\mid \\ $$$${so}\:{if}\:\mid{x}\mid<\mathrm{1}\:\:{the}\:{serie}\:{converges} \\ $$$${if}\:{x}=−\mathrm{1}\:\:\Sigma\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} }\:{converges}\left({alternate}\:{serie}\right) \\ $$$${if}\:{x}=\mathrm{1}\:\:\Sigma\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:{is}\:{a}\:{reiman}\:{serie}\:{convergent} \\ $$$${and}\:{R}=\mathrm{1} \\ $$$${we}\:{have}\:\:\frac{{dS}}{{dx}}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{nx}^{{n}−\mathrm{1}} }{{n}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{{x}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}} \\ $$$$=−\frac{{ln}\left(\mathrm{1}−{x}\right)}{{x}}\:\:\left(\:\:{we}\:{suppose}\:{that}\:{x}\neq\mathrm{0}\right)\:\Rightarrow \\ $$$${S}\left({x}\right)\:=\:−\int_{\mathrm{0}} ^{{x}} \:\:\frac{{ln}\left(\mathrm{1}−{t}\right)}{{t}}\:{dt}\:+{c} \\ $$$${c}={S}\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow\:{S}\left({x}\right)=−\int_{\mathrm{0}} ^{{x}} \:\frac{{ln}\left(\mathrm{1}−{t}\right)}{{t}}\:{dt}\:. \\ $$

Commented by abdo mathsup 649 cc last updated on 07/Jul/18

2) Σ_(n=1) ^∞   (1/n^2 ) =S(1)  = −∫_0 ^1  ((ln(1−t))/t)  dt   and we have always proved that  Σ_(n=1) ^∞  (1/n^2 ) =(π^2 /6) .

$$\left.\mathrm{2}\right)\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:={S}\left(\mathrm{1}\right)\:\:=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{t}\right)}{{t}}\:\:{dt}\: \\ $$$${and}\:{we}\:{have}\:{always}\:{proved}\:{that}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com