Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 39695 by maxmathsup by imad last updated on 09/Jul/18

let f(x)=ln(2xarctan(√(2x^2  −1)))  1) find D_f   2)calculate f^′ (x) and  determine its sign.  3) determine the equation of assymptote at pont A(1,f(1))  3) find a and b from R /  f(x)∼ a(x−1) +b  (x→1)  4) calculate ∫_0 ^1  f(x)dx  5) calculate f^(′′) (x)

$${let}\:{f}\left({x}\right)={ln}\left(\mathrm{2}{xarctan}\sqrt{\left.\mathrm{2}{x}^{\mathrm{2}} \:−\mathrm{1}\right)}\right. \\ $$$$\left.\mathrm{1}\right)\:{find}\:{D}_{{f}} \\ $$$$\left.\mathrm{2}\right){calculate}\:{f}^{'} \left({x}\right)\:{and}\:\:{determine}\:{its}\:{sign}. \\ $$$$\left.\mathrm{3}\right)\:{determine}\:{the}\:{equation}\:{of}\:{assymptote}\:{at}\:{pont}\:{A}\left(\mathrm{1},{f}\left(\mathrm{1}\right)\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{a}\:{and}\:{b}\:{from}\:{R}\:/\:\:{f}\left({x}\right)\sim\:{a}\left({x}−\mathrm{1}\right)\:+{b}\:\:\left({x}\rightarrow\mathrm{1}\right) \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{f}\left({x}\right){dx} \\ $$$$\left.\mathrm{5}\right)\:{calculate}\:{f}^{''} \left({x}\right) \\ $$

Commented by maxmathsup by imad last updated on 14/Jul/18

1) we have f(x)=ln(2x) +ln(arctan((√(2x^2  −1))))  x ∈ D_f   ⇔ x>0 and 2x^2  −1>0 and arctan((√(2x^2  −1)))>0 but  2x^2  −1>0 ⇔x^2 >(1/2)  ⇒∣x∣>(1/(√2)) ⇒ x∈]−∞,−(1/(√2))[∪](1/(√2)),+∞[ ⇒  D_f =](1/(√2)),+∞[  2) f^, (x) = (1/x)  +(((arctan((√(2x^2 −1))))^′ )/(arctan((√(2x^2  −1)))))  =(1/x) +(1/(arctan((√(2x^2  −1))))) { (((4x)/(2(√(2x^2  −1))))/(1+2x^2 −1))}  =(1/x) +  (1/(x arctan((√(2x^2 −1)))(√(2x^2 −1)))) .

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}\left({x}\right)={ln}\left(\mathrm{2}{x}\right)\:+{ln}\left({arctan}\left(\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:−\mathrm{1}}\right)\right) \\ $$$${x}\:\in\:{D}_{{f}} \:\:\Leftrightarrow\:{x}>\mathrm{0}\:{and}\:\mathrm{2}{x}^{\mathrm{2}} \:−\mathrm{1}>\mathrm{0}\:{and}\:{arctan}\left(\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:−\mathrm{1}}\right)>\mathrm{0}\:{but} \\ $$$$\left.\mathrm{2}{x}^{\mathrm{2}} \:−\mathrm{1}>\mathrm{0}\:\Leftrightarrow{x}^{\mathrm{2}} >\frac{\mathrm{1}}{\mathrm{2}}\:\:\Rightarrow\mid{x}\mid>\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\Rightarrow\:{x}\in\right]−\infty,−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\left[\cup\right]\frac{\mathrm{1}}{\sqrt{\mathrm{2}}},+\infty\left[\:\Rightarrow\right. \\ $$$$\left.{D}_{{f}} =\right]\frac{\mathrm{1}}{\sqrt{\mathrm{2}}},+\infty\left[\right. \\ $$$$\left.\mathrm{2}\right)\:{f}^{,} \left({x}\right)\:=\:\frac{\mathrm{1}}{{x}}\:\:+\frac{\left({arctan}\left(\sqrt{\left.\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}\right)}\right)^{'} \right.}{{arctan}\left(\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:−\mathrm{1}}\right)}\:\:=\frac{\mathrm{1}}{{x}}\:+\frac{\mathrm{1}}{{arctan}\left(\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:−\mathrm{1}}\right)}\:\left\{\:\frac{\frac{\mathrm{4}{x}}{\mathrm{2}\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:−\mathrm{1}}}}{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}}\right\} \\ $$$$=\frac{\mathrm{1}}{{x}}\:+\:\:\frac{\mathrm{1}}{{x}\:{arctan}\left(\sqrt{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}}\right)\sqrt{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}}}\:. \\ $$

Commented by maxmathsup by imad last updated on 14/Jul/18

we have x>(1/(√2)) ⇒ f^′ (x)>0  2) equation of tangent to C_f  at point A(1,f(1))is y=f^′ (1)(x−1) +f(1)  but f(1)=ln(2) +ln((π/4))  and f^′ (1) = 1+ (4/π) ⇒  y =(1+(4/π))(x−1) +ln(2) +ln((π/4)) .

$${we}\:{have}\:{x}>\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\Rightarrow\:{f}^{'} \left({x}\right)>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{equation}\:{of}\:{tangent}\:{to}\:{C}_{{f}} \:{at}\:{point}\:{A}\left(\mathrm{1},{f}\left(\mathrm{1}\right)\right){is}\:{y}={f}^{'} \left(\mathrm{1}\right)\left({x}−\mathrm{1}\right)\:+{f}\left(\mathrm{1}\right) \\ $$$${but}\:{f}\left(\mathrm{1}\right)={ln}\left(\mathrm{2}\right)\:+{ln}\left(\frac{\pi}{\mathrm{4}}\right)\:\:{and}\:{f}^{'} \left(\mathrm{1}\right)\:=\:\mathrm{1}+\:\frac{\mathrm{4}}{\pi}\:\Rightarrow \\ $$$${y}\:=\left(\mathrm{1}+\frac{\mathrm{4}}{\pi}\right)\left({x}−\mathrm{1}\right)\:+{ln}\left(\mathrm{2}\right)\:+{ln}\left(\frac{\pi}{\mathrm{4}}\right)\:. \\ $$

Commented by maxmathsup by imad last updated on 14/Jul/18

3) in this Q change assymptote by tangent .

$$\left.\mathrm{3}\right)\:{in}\:{this}\:{Q}\:{change}\:{assymptote}\:{by}\:{tangent}\:. \\ $$

Commented by maxmathsup by imad last updated on 14/Jul/18

4) a=(1+(4/π))  and b=ln(2)+ln((π/4))

$$\left.\mathrm{4}\right)\:{a}=\left(\mathrm{1}+\frac{\mathrm{4}}{\pi}\right)\:\:{and}\:{b}={ln}\left(\mathrm{2}\right)+{ln}\left(\frac{\pi}{\mathrm{4}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com